Thermomechanical (TMP) and Chemo-Thermomechanical Pulps (CTMP) for Medium Density Fibreboards (MDF)

Holzforschung ◽  
2001 ◽  
Vol 55 (2) ◽  
pp. 214-218 ◽  
Author(s):  
Edmone Roffael ◽  
Brigitte Dix ◽  
Thomas Schneider

Summary Thermomechanical (TMP) and chemo-thermomechanical pulps (CTMP) were prepared from spruce under different pulping conditions. The fibres were dried at 70 °C and medium density fibreboards (MDF) were made therefrom in pilot plant scale using urea-formaldehyde resins as a binder. The results of testing the physical-mechanical properties reveal that the pulping temperature has a significant influence on the thickness swelling and water absorption of the boards. MDF prepared from fibres produced at high pulping temperature (180 °C) generally show lower thickness swelling and water absorption than MDF made from fibres produced at low pulping temperature (140°C and 160 °C). However, high pulping temperature may have a negative effect on the internal bond strength of the boards. In general, CTMP leads to MDF with higher internal bonding strength compared to those derived from TMP. In addition, the influence of different drying conditions (150 °C and 170 °C) of TMP and CTMP on the physical-mechanical properties of MDF was assessed. MDF made from CTMP showed lower thickness swelling when dried under high temperature.

Nativa ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 177
Author(s):  
Talita Baldin ◽  
Maiara Talgatti ◽  
Amanda Grassamann da Silveira ◽  
Bruna Gabrieli Resner ◽  
Elio José Santini

O objetivo do presente trabalho foi avaliar o potencial de uso de partículas de resíduos de embalagens cartonadas e partículas de Eucalyptus grandis para a fabricação de compósitos, colados com adesivo à base de ureia-formaldeído. Foram utilizadas cinco diferentes proporções de madeira de E. grandis e embalagens cartonadas. As partículas de madeira e embalagens cartonadas foram produzidas em laboratório. A avaliação da qualidade dos compósitos envolveu a caracterização da geometria das partículas, das propriedades físicas: massa específica básica, teor de umidade de equilíbrio, absorção de água e inchamento em espessura após 2 e 24 horas de imersão em água e das propriedades mecânicas: flexão estática (MOE e MOR), resistência ao arrancamento de parafuso, ligação interna e dureza Janka. A incorporação de partículas de embalagens cartonadas proporcionou uma melhoria nas propriedades físicas em relação aos compósitos puros de madeira. Já para as propriedades mecânicas, compósitos com até 50% de embalagens cartonadas obtiveram melhores resultados, no entanto, a incorporação a partir de 75% ocasionou decadência nessas propriedades. Compósitos de madeira de E. grandis e embalagens cartonadas apresentaram potencial para utilização em ambientes internos e podem ser uma alternativa para a produção de compósitos sustentáveis e de boa qualidade.Palavra-chave: materiais sustentáveis, propriedades físicas e mecânicas, ureia-formaldeído. CARTONBOARD PACKAGING AS A RAW MATERIAL IN THE MANUFACTURE OF COMPOSITES ABSTRACT:The aim of this study was to evaluate the potential waste particles use of carton packaging and particles of E. grandis for the manufacture of particle boards, bonded with urea-formaldehyde-based adhesive. Five different proportions of E. grandis wood and cartons have been used. The wood particles and cartons were produced in the laboratory. The quality assessment panels involved characterizing the geometry of the particles, the physical properties: specific gravity, equilibrium moisture content, water absorption and thickness swelling after 2 and 24 hours of immersion in water and mechanical properties: flexural static (MOR and MOE), resistance to screw pullout, internal bond and Janka hardness. The incorporation of particulate cartons provided an improvement in physical properties relative to pure wood panels. As for the mechanical properties, panels of up to 50 % of cartons obtained best results, however, incorporating from 75 % decay caused these properties. The wood particleboard of E. grandis and cartons showed potential for use indoors and become an alternative for producing sustainable panels and of good quality.Keywords: sustainable materials, physical-mechanical properties; urea-formaldehyde. DOI:


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4875 ◽  
Author(s):  
Pavlo Bekhta ◽  
Gregory Noshchenko ◽  
Roman Réh ◽  
Lubos Kristak ◽  
Ján Sedliačik ◽  
...  

The purpose of this study was to evaluate the feasibility of using magnesium and sodium lignosulfonates (LS) in the production of particleboards, used pure and in mixtures with urea-formaldehyde (UF) resin. Polymeric 4,4′-diphenylmethane diisocyanate (pMDI) was used as a crosslinker. In order to evaluate the effect of gradual replacement of UF by magnesium lignosulfonate (MgLS) or sodium lignosulfonate (NaLS) on the physical and mechanical properties, boards were manufactured in the laboratory with LS content varying from 0% to 100%. The effect of LS on the pH of lignosulfonate-urea-formaldehyde (LS-UF) adhesive compositions was also investigated. It was found that LS can be effectively used to adjust the pH of uncured and cured LS-UF formulations. Particleboards bonded with LS-UF adhesive formulations, comprising up to 30% LS, exhibited similar properties when compared to boards bonded with UF adhesive. The replacement of UF by both LS types substantially deteriorated the water absorption and thickness swelling of boards. In general, NaLS-UF-bonded boards had a lower formaldehyde content (FC) than MgLS-UF and UF-bonded boards as control. It was observed that in the process of manufacturing boards using LS adhesives, increasing the proportion of pMDI in the adhesive composition can significantly improve the mechanical properties of the boards. Overall, the boards fabricated using pure UF adhesives exhibited much better mechanical properties than boards bonded with LS adhesives. Markedly, the boards based on LS adhesives were characterised by a much lower FC than the UF-bonded boards. In the LS-bonded boards, the FC is lower by 91.1% and 56.9%, respectively, compared to the UF-bonded boards. The boards bonded with LS and pMDI had a close-to-zero FC and reached the super E0 emission class (≤1.5 mg/100 g) that allows for defining the laboratory-manufactured particleboards as eco-friendly composites.


2015 ◽  
Vol 1134 ◽  
pp. 116-122
Author(s):  
Roslan Ali ◽  
Mohamad Nurul Azman Mohammad Taib ◽  
Kamal Wok ◽  
Shawaluddin Tahiruddin ◽  
Mohd Amrin Abdullah

This study was done to investigate the effects of ozone treatment as a method to improve the properties of empty fruit bunch (EFB) medium density particleboard. Two types of EFB were used in this study i.e. screw pressed and non-screw pressed empty fruit bunch. These EFB were treated in an ozone chamber for 8 hours prior to particleboard manufacturing. The mechanical properties, Modulus of Elasticity (MOE), Modulus of Rupture (MOR) and Internal Bonding (IB) and physical properties, water Absorption (WA) and Thickness Swelling (TS) of EFB particleboard were determined. The results showed that the ozone treatment could increase the MOR and IB values of EFB particleboard, but had no significant effect on MOE values. For physical properties, the values showed no improvement for TS and WA. The panels manufactured using ozone treatment was found suitable for applications for furniture products.


FLORESTA ◽  
2010 ◽  
Vol 40 (2) ◽  
Author(s):  
Luciane Paes Torquato ◽  
Setsuo Iwakiri ◽  
Ghislaine Miranda Bonduelle ◽  
Carlos Eduardo Camargo de Albuquerque ◽  
Jorge Luís Monteiro de Matos

Este trabalho foi desenvolvido com o objetivo de avaliar a qualidade de painéis MDF produzidos pelas indústrias brasileiras com base nos resultados de propriedades físicas e mecânicas dos painéis tipo “standard” com 15 mm de espessura. Foram selecionadas quatro empresas produtoras de painéis MDF, que foram identificadas pelas letras A, B, C e D. Para as avaliações das propriedades dos painéis, foram, coletadas para todas as empresas, três painéis-amostras produzidos com madeira de pinus, além de painéis de eucalipto para a empresa D. As propriedades avaliadas foram: teor de umidade, densidade, perfil de densidade, absorção de água e inchamento em espessura 2 e 24 horas, ligação interna e flexão estática. Os ensaios foram realizados de acordo com a norma europeia EM, e os resultados foram comparados com os requisitos da norma EN 622-5:2006. Os painéis produzidos com madeira de eucalipto apresentaram valores médios inferiores de ligação interna e média de absorção de água maior que os obtidos com painéis de pinus. Os valores médios de inchamento em espessura 24 horas, MOE e MOR em flexão estática paralela dos painéis MDF comerciais avaliados nesta pesquisa atendem aos requisitos mínimos da norma EN 622-5:2006. Os valores médios de ligação interna foram inferiores em relação aos requisitos dessa norma. Palavras-chave: Painéis MDF; pinus; fibras de madeira.   Abstract Evaluation of physical and mechanical properties of medium density fiberboard (MDF) manufactured from brazilian industries. This research was developed to evaluate the quality of MDF manufactured by brazilian industries based on the results of physical and mechanical properties of the standard boards with 15 mm thickness. Four factories were selected and identified as A, B, C, and D. For the evaluation of the board properties, they were collected from the all factories three samples produced by pine wood, besides of sample produced by eucalipto wood to the factory D. The following board properties were evaluated: moisture content, density, density profile, water absorption and thickness swelling 2 and 24 hours, internal bond and static bending. The tests were carried out according to European Standard EN and the results were compared with the requirements of European Standard EN 622-5:2006. The boards manufactured from eucalipto wood showed lower average values of internal bond and higher water absorption in comparison to boards manufactured from pine wood. The average values of thickness swelling after 24 hours water soaking, MOE and MOR parallel static bending of the commercial MDF evaluated in this study attends to minimum requirements of EN 622-5:2006. The average values of internal bond were lower than in relation to the EN standard.Keywords: MDF; pine; wood fiber.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1327
Author(s):  
Conrad M. Sala ◽  
Eduardo Robles ◽  
Grzegorz Kowaluk

The sizeable global production of wood-based products requires new sources of raw material, but also creates large quantities of wastes or composites that do not comply with requirements. In this study, the influence of different shares of recovered high-density fiberboards (HDF-r), reversed into the production, on industrial HDF properties, has been examined. HDF-r may be a suitable partial substitute for raw pinewood for industrial HDF production. Although most of the mechanical properties, as well as thickness swelling and water absorption, had a linear decrease with the increase in the share of HDF-r share, the elaborated boards met most of the commercial requirements (EN 622-5). The property that did not meet the requirements was the internal bond strength for panels with 10% of HDF-r. The presented results show that, after some adjustments, it should be possible to produce HDF boards with up to 10% of recycled HDF being able to meet all commercial requirements.


2018 ◽  
Vol 1 (1) ◽  
pp. 16-23
Author(s):  
Apri Heri Iswanto ◽  
Dita Sari Prabuningrum ◽  
Irawati Azhar ◽  
Supriyanto Supriyanto

The objective of this research was to evaluate the effect of length size particle on physical and mechanical properties of particleboard. Sorghum bagasse was cut into 3, 5, and 7 cm length size. Furthermore, particles were dried until reached of4% moisture content. Amount of 10% urea-formaldehyde (UF) resin used for binding. Hot pressing process conducted in 130C temperature for 10 minutes and 30 kg cm -2 pressure. The results showed that thickness swelling (TS) and internal bond (IB) did not fulfill of requirement of Japanese Industrial Standard (JIS) A 5908 (2003). According to all parameters, 3 cm length size of particle was resulting in the best properties.


1970 ◽  
Vol 43 (4) ◽  
pp. 581-587
Author(s):  
M Hasan Shahria ◽  
M Ashaduzzaman ◽  
M Iftekhar Shams ◽  
Arifa Sharmin ◽  
M Muktarul Islam

The study was conducted to find out the potentiality of Pitali (Trewia nudiflora) for manufacturing commercial plywood and evaluating its physical and mechanical properties. Two 9-ply plywood of 2.4m x 1.2m x 18mm size were manufactured using liquid urea formaldehyde adhesive. The physical and mechanical properties of T. nudiflora plywood were compared with the existing market available plywood manufactured by Simul (Bombax ceiba). It was found that density were 509.82 kg/m3 and 490.96 kg/m3, moisture content after curing were 10.67% and 17.61%, thickness swelling were 6.90% and 7.29%, linear expansion were 0.19% and 0.15%, water absorption were 50.89% and 64.79%, MOR were 29.94 N/mm2 and 27.05 N/mm2, MOE were 1613.89 N/mm2 and 1160.68 N/mm2, and tensile strength were 14.75 N/mm2 and 13.12 N/mm2 for T. nudiflora plywood and market plywood respectively. The evaluated physical and mechanical properties of T. nudiflora plywood were also compared with some relevant results and standards reported earlier. Key Words: Plywood, Trewia nudiflora, Physical properties, Mechanical properties. doi: 10.3329/bjsir.v43i4.2249 Bangladesh J. Sci. Ind. Res. 43(4),581-587, 2008


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1818
Author(s):  
Waheed Gul ◽  
Hussein Alrobei

In this research, the special effects of graphene oxide nanoparticle charging (0, 2, 4, 6, wt.%) on the properties of medium-density fiberboard were examined. Physical and mechanical properties of the panels were determined conferring the method of European Norm standards. The consequences exhibited substantial enhancement in mechanical properties, explicitly in modulus of rupture, modulus of elasticity and internal bonding for 2–6% nanoparticle addition in a urea–formaldehyde resin. The mechanical properties, i.e., internal bond, modulus of elasticity and modulus of rupture were improved by 28.5%, 19.22% and 38.8%, respectively. Results also show a clear enhancement in thickness swelling and water absorption. The physical properties of thickness swelling, water absorption and thermal conductivity were improved up to 50%, 19.5% and 39.79%, respectively. The addition of graphene oxide nanoparticles strongly affected the curing time of the urea–formaldehyde resin and improved its thermal stability.


2010 ◽  
Vol 45 (8) ◽  
pp. 901-906 ◽  
Author(s):  
Rokiah Hashim ◽  
Mohd Hazim Mohd Amini ◽  
Othman Sulaiman ◽  
Salim Hiziroglu ◽  
Fumio Kawamura ◽  
...  

This study investigated certain aspects of physical and mechanical properties and resistance against biological deterioration of particleboard panels treated with extractives from different parts of Cerbera odollam trees. Particles of rubber-wood ( Hevea brasiliensis) treated with extracts of leaf, fruit, wood, bark, flower, and seed of Cerbera odollam were used to manufacture panels in laboratory conditions. Two types of adhesive, namely melamine urea formaldehyde and phenol resorcinol formaldehyde were used as binder for the panels. Treated panels had higher resistance against powder post beetle in laboratory as well as field exposures. Both thickness swelling and internal bond strength values of treated samples satisfied requirements for P4 Type particleboards stated in European Standards (EN 312). It appears that such extractives possess potential to enhance resistance of particleboard against insect damage in tropical countries.


2013 ◽  
Vol 37 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Mário Vanoli Scatolino ◽  
Danillo Wisky Silva ◽  
Rafael Farinassi Mendes ◽  
Lourival Marin Mendes

Agricultural residues are materials generated in large quantities in Brazil and can accumulate to such extent as to cause environmental problems. Among agricultural residues, maize cob is one worthy of notice, and an alternative use for maize cob would be to produce particleboard panels in association with wood particles. This study aimed to evaluate the feasibility of using maize cob for production of particleboard panels. The following maize cob percentages were used: 0%, 25%, 50%, 75% and 100%, in association with particles of Pinus oocarpa wood. Panels were made with 8% of urea formaldehyde and 1% of paraffin (based on dry weight of particles). For compressing the panels, a pressure of 3.92 MPa was applied at a temperature of 160º C, for 8 minutes. Increased replacement of pinewood by maize cob residue promoted significant improvements to the properties water absorption after two hours of immersion, thickness swelling after two and after twenty-four hours of immersion. Mechanical properties had a decreasing correlation with the maize cob percentage being incorporated.


Sign in / Sign up

Export Citation Format

Share Document