Effect of Ozone Treatment on Properties of Screw Pressed and Non-Screw Pressed Empty Fruit Bunch Medium Density Particleboard

2015 ◽  
Vol 1134 ◽  
pp. 116-122
Author(s):  
Roslan Ali ◽  
Mohamad Nurul Azman Mohammad Taib ◽  
Kamal Wok ◽  
Shawaluddin Tahiruddin ◽  
Mohd Amrin Abdullah

This study was done to investigate the effects of ozone treatment as a method to improve the properties of empty fruit bunch (EFB) medium density particleboard. Two types of EFB were used in this study i.e. screw pressed and non-screw pressed empty fruit bunch. These EFB were treated in an ozone chamber for 8 hours prior to particleboard manufacturing. The mechanical properties, Modulus of Elasticity (MOE), Modulus of Rupture (MOR) and Internal Bonding (IB) and physical properties, water Absorption (WA) and Thickness Swelling (TS) of EFB particleboard were determined. The results showed that the ozone treatment could increase the MOR and IB values of EFB particleboard, but had no significant effect on MOE values. For physical properties, the values showed no improvement for TS and WA. The panels manufactured using ozone treatment was found suitable for applications for furniture products.

2007 ◽  
Vol 18-19 ◽  
pp. 43-48 ◽  
Author(s):  
J.O. Osarenmwinda ◽  
J.C. Nwachukwu

The purpose of this study was to determine the effect of particle size on the mechanical properties (Modulus of Elasticity, Modulus of Rupture, and Internal Bond) and physical properties (thickness swelling and water absorption) of rice husk particleboard. The particle sizes used were 1.0mm, 1.18mm, 2mm, 2.36mm and 2.80mm. Each was mixed with a constant resin (urea formaldehyde) concentration of 20% of oven dry weight of rice husk particles. The results showed that as the particle size increased, the particleboard’s mechanical and physical properties decreased. For example, the modulus of elasticity, modulus of rupture, internal bond, thickness swelling and water absorption for 1.0mm particle size particleboard were 1590N/mm2, 11.11N/mm2, 0.28N/mm2,10.90% and 38.53% respectively, while for 2.8mm particle size they were 1958N/mm2,14.2N/mm2, 0.44N/mm2, 11.51% and 47.21% respectively. Overall results showed that particleboard made from rice husk exceed the EN standard for modulus of elasticity, modulus of rupture, internal bond. However, thickness swelling values were poor. Hence, the smaller the particle size the better the properties of the particleboard.


2019 ◽  
Vol 8 (4) ◽  
pp. 6808-6812

This study investigate the effect of the board thickness and resin content on the properties of particleboard. Single-layered sawmill wastes and rubberwood particleboards bonded with urea formaldehyde (UF) resins were manufactured. The boards were fabricated with three different board thicknesses (15, 18 and 25mm) at three different resin contents (7, 8 and 9%). The boards produced were evaluated for their modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding (IB) and thickness swelling (TS) in accordance with the European Standards. Board thickness does affect the mechanical properties of particleboard. The study revealed that thinner boards gave higher MOE, MOR, IB and TS. No significant effects were found among three resin contents for MOE, MOR, IB and TS. It can be concluded that the particleboard made from mix tropical wood from sawmill waste and with rubberwood were suitable for particleboard manufacturing.


2016 ◽  
Vol 8 (2) ◽  
pp. 43-52 ◽  
Author(s):  
Djoko Purwanto

Oil palm empty fruit bunches (OPEFB) fiber were industrial waste that has not been widely used by the community, only stacked and cause odors that interfere with the surrounding environment. This research studied the utilization of OPEFB fiber for cement board products using cement as resin and CaCl2 as accelerator. Laboratory scale cement board made from OPEFB fiber were mixed with cement, and CaCl2. The composition of fiber and cement were 1:1, 1:1.5, 1:2, and CaCl2 variations were 0%, 1% and 3%. A mixture of fibers, cement and CaCl2 was compressed at the pressure of 4 ton for 24 hours. The cement boards were tested for physical and mechanical properties according to JIS A 5417-1992, and the results were compared to the requirements of the cement board JIS A 5417-1992. Cement board made from fiber and cement composition 1:1.5 and CaCl2 content 3% produced moisture content, thickness swelling, water absorption, density, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength that met the requirement of JIS A 5417-1992. The composition of fiber and cement and the variations of CaCl2 content produced significant effect on water content, water absorption, thickness swelling, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength on cement boards.Keywords : oil palm empty fruit bunches fiber, cement boards, physical and mechanical properties


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6159-6173
Author(s):  
Chuan Li Lee ◽  
Kit Ling Chin ◽  
Paik San H'ng ◽  
Pui San Khoo ◽  
Luqman Abdullah Chuah

The efficacy of additional water-soluble additives was studied relative to the physical and mechanical properties of particleboards produced from oil palm empty fruit bunch (OPEFB). Polyethylene glycol, acrylamide, and acrylic resin were selected as water-soluble additives for use in the OPEFB particleboard production process. The effects of the three additives at two different concentrations (2% and 4% of dry OPEFB mass) on the particleboard properties were evaluated. Addition of water-soluble additives increased the performance of the OPEFB particleboard. The additive concentration has a significant effect on the properties of the particleboard. With the increase of additive concentration, the internal bonding and modulus of rupture value increased while the thickness swelling and water absorption decreased. Particleboards with an additional 4% of acrylamide or polyethylene glycol achieved the highest modulus of rupture (22 MPa), highest internal bonding strength (1 N/mm2), and lowest thickness swelling (9%). All the particleboards produced with 4% of water-soluble additive achieved the standard requirements of JIS A 5908:2003 for physical and mechanical properties.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6984-6992
Author(s):  
Ali Hassanpoor Tichi

Effects of two widely available and underutilized lignocellulosic materials on the mechanical and physical properties of particleboards were investigated in this work. The ratio of mixtures lignocellulosic flakes at four levels (100% aspen wood), (50% aspen wood: 25% citrus: 25% old railroad ties), (50% aspen wood: 50% citrus), and (50% aspen wood: 50% old railroad ties), and the percentage of resin in two levels (8 and 12%) were considered as variable factors. The 100% aspen wood (Populus tremula) was mixed as a control board (100% aspen wood). Then the mechanical and physical properties of the samples including modulus of rupture, modulus of elasticity, internal bond, water absorption, and thickness swelling after 2 h and 24 h of immersion (EN 310-319) and fire resistance (ISO 11925-2) were measured. The results showed that with increasing poplar wood in mixtures, modulus of rupture, modulus of elasticity, internal bond increased, while water absorption and thickness swelling decreased. Also, in comparison with the control boards, the boards that were made by mixing 50% poplar and 50% citrus branches with 12% glue had the highest mechanical strength. The results also showed that increasing the amount of old railroad ties chips in mixing caused a significant decrease in the fire retardancy of the boards.


2014 ◽  
Vol 1025-1026 ◽  
pp. 543-546
Author(s):  
Juliana Cortez Barbosa ◽  
Anderson Luiz da Silva Michelon ◽  
Elen Aparecida Martines Morales ◽  
Cristiane Inácio de Campos ◽  
André Luis Christoforo ◽  
...  

The aim of this research was to produce three-layer Medium Density Particleboard (MDP), with the addition of impregnated paper, in the inner layer, in proportions of 1; 5 and 20%. In this study, MDP was composed with particles of small size in outer layers, and larger particles in internal layer. After panel manufacturing, physical and mechanical tests based on Brazilian Code ABNT NBR 14.810 were carried out to determine moisture content; density; thickness swelling; water absorption; modulus of rupture (MOR) and modulus of elasticity (MOE) in static bending and internal adhesion. Test results were compared to commercial panels, produced with 100% Eucalyptus, considering the requirements specified by Brazilian Code. Properties presented values close to normative specifications, indicating positively the possibility of production of MDP using addition of waste paper impregnated.


2021 ◽  
Vol 3 (1) ◽  
pp. 41-44
Author(s):  
Nur Wafa Amalina Amali ◽  
Nor Yuziah Mohd Yunus ◽  
Wan Mohd Nazri Wan Abdul Rahman

In this study, mechanical properties of commercially manufactured hybrid particleboard from mix-tropical wood and rubberwood with four different densities at 25mm thickness have been investigated. The particleboard sample cutting and testing was in accordance to EN312:2013. The density of particleboard is identified with interval of 10kg/m3 for different densities which include 660kg/m3, 670kg/m3, 680kg/m3 and 690kg/m3. Particleboards were made with the ratio of 40:60 for mix-tropical wood particle and rubberwood particle respectively. The particleboards were prepared with urea formaldehyde (UF) with E1 formulation with addition of wax and hardener.  Increment of 10kg/m3 density for each particleboard led to increase in internal bonding (IB), bending testing include modulus of rupture (MOR) and modulus of elasticity (MOE), surface soundness (SS) and screw edge (SE) withdrawal. It was found that with board increment of 10kg/m3, the improvement was not statically significant except that for MOR. All panels met the minimum requirements of standard.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


Holzforschung ◽  
2001 ◽  
Vol 55 (2) ◽  
pp. 214-218 ◽  
Author(s):  
Edmone Roffael ◽  
Brigitte Dix ◽  
Thomas Schneider

Summary Thermomechanical (TMP) and chemo-thermomechanical pulps (CTMP) were prepared from spruce under different pulping conditions. The fibres were dried at 70 °C and medium density fibreboards (MDF) were made therefrom in pilot plant scale using urea-formaldehyde resins as a binder. The results of testing the physical-mechanical properties reveal that the pulping temperature has a significant influence on the thickness swelling and water absorption of the boards. MDF prepared from fibres produced at high pulping temperature (180 °C) generally show lower thickness swelling and water absorption than MDF made from fibres produced at low pulping temperature (140°C and 160 °C). However, high pulping temperature may have a negative effect on the internal bond strength of the boards. In general, CTMP leads to MDF with higher internal bonding strength compared to those derived from TMP. In addition, the influence of different drying conditions (150 °C and 170 °C) of TMP and CTMP on the physical-mechanical properties of MDF was assessed. MDF made from CTMP showed lower thickness swelling when dried under high temperature.


2014 ◽  
Vol 599-601 ◽  
pp. 140-143 ◽  
Author(s):  
Xiang Fei Fu ◽  
Cheng Yong ◽  
Ming Jie Guan

In this paper, the bamboo-poplar composite oriented strand board (OSB) with different hybrid ratios were aged under the standard of ASTM D1037 to evaluate its weathering performances. The thickness swelling (TS), water absorption, modulus of rapture in perpendicular direction (MOR⊥), modulus of elasticity in perpendicular direction (MOE⊥) and internal bonding (IB) of specimens were tested. The results showed that the reduction rate of TS ranged from 21% to 69%, which increased with the poplar ratio increasing; the growth multiple of 24h water absorption of bamboo-poplar composite OSB were at the similar level, the values of which were much smaller than that of the pure bamboo or poplar OSB; the maximum and minimum retention rate of MOR⊥ and MOE⊥ belonged to pure bamboo and poplar OSB respectively, retention rate of MOR⊥ of the bamboo-poplar composite OSB rose with the increment of poplar ratio, while retention rate of MOE⊥ and IB of bamboo-poplar composite OSB were similar and the hybrid ratio 2.5:7.5(bamboo: poplar) obtained the maximum IB retention rate of 16%. Through detailed comparison, the bamboo-poplar composite OSB with the hybrid ratio 2.5:7.5 performed the best after aging.


Sign in / Sign up

Export Citation Format

Share Document