Nondestructive estimation of tracheid length from sections of radial wood strips by near infrared spectroscopy

Holzforschung ◽  
2004 ◽  
Vol 58 (4) ◽  
pp. 375-381 ◽  
Author(s):  
L.R. Schimleck ◽  
P.D. Jones ◽  
G.F. Peter ◽  
R.F. Daniels ◽  
A. ClarkIII

Abstract The use of calibrated near infrared (NIR) spectroscopy for predicting tracheid length of Pinus taeda L. (loblolly pine) wood samples is described. Ten-mm sections of 14 P. taeda radial strips were selected and NIR spectra obtained from the radial longitudinal face of each section. The fibers in these sections were characterized in terms of arithmetic and length-weighted mean tracheid length using a fiber quality analyzer, and calibrations with NIR spectra were developed for both measures of tracheid length. Relationships were good, with coefficients of determination (R 2) of 0.88 for arithmetic tracheid length and 0.96 for length-weighted tracheid length. The accuracy of NIR predicted length-weighted tracheid length was sufficient for ranking purposes.

IAWA Journal ◽  
2005 ◽  
Vol 26 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Laurence R. Schimleck ◽  
Robert Evans ◽  
P. David Jones ◽  
Richard F. Daniels ◽  
Gary F. Peter ◽  
...  

Near infrared (NIR) spectroscopy offers a rapid method for the estimation of microfibril angle (MFA) and SilviScan-estimated wood stiffness (EL(SS)). The success of these NIR calibrations may be related to airdry density, because density varies in wood simultaneously with MFA and stiffness. The importance of density variation was investigated by developing calibrations for MFA and EL(SS) using Pinus radiata D. Don (radiata pine) and Pinus taeda L. (loblolly pine) sample sets where the density range was small and the relationships between density and MFA and density and EL(SS) were poor. Excellent calibrations for MFA and EL(SS) were obtained, particularly when sets had densities greater than 500 kg/m3, can provide strong relationships for MFA and stiffness even when density variation is limited. Examination of loading plots from the MFA and EL(SS) calibrations indicates that variation in wood components such as cellulose, lignin and possibly hemicellulose is important.


2005 ◽  
Vol 35 (1) ◽  
pp. 85-92 ◽  
Author(s):  
P D Jones ◽  
L R Schimleck ◽  
G F Peter ◽  
R F Daniels ◽  
A Clark III

Preliminary studies based on small sample sets show that near infrared (NIR) spectroscopy has the potential for rapidly estimating many important wood properties. However, if NIR is to be used operationally, then calibrations using several hundred samples from a wide variety of growing conditions need to be developed and their performance tested on samples from new populations. In this study, 120 Pinus taeda L. (loblolly pine) radial strips (cut from increment cores) representing 15 different sites from three physiographic regions in Georgia (USA) were characterized in terms of air-dry density, microfibril angle (MFA), and stiffness. NIR spectra were collected in 10-mm increments from the radial longitudinal surface of each strip and split into calibration (nine sites, 729 spectra) and prediction sets (six sites, 225 spectra). Calibrations were developed using untreated and mathematically treated (first and second derivative and multiplicative scatter correction) spectra. Strong correlations were obtained for all properties, the strongest R2 values being 0.83 (density), 0.90 (MFA), and 0.93 (stiffness). When applied to the test set, good relationships were obtained (Rp2 ranged from 0.80 to 0.90), but the accuracy of predictions varied depending on math treatment. The addition of a small number of cores from the prediction set (one core per new site) to the calibration set improved the accuracy of predictions and importantly minimized the differences obtained with the various math treatments. These results suggest that density, MFA, and stiffness can be estimated by NIR with sufficient accuracy to be used in operational settings.


2005 ◽  
Vol 13 (1) ◽  
pp. 47-51 ◽  
Author(s):  
Laurence R. Schimleck ◽  
P. David Jones ◽  
Gary F. Peter ◽  
Richard F. Daniels ◽  
Alexander Clark

Near infrared (NIR) spectroscopy provides a rapid method for estimating several important wood properties of 10 mm sections of radial wooden strips. Successful calibrations have been obtained with NIR spectra collected from 3 to 16 consecutive 10 mm sections of the same wood core. The success of these calibrations might be due to an autocorrelation that exists between the adjacent sections of a core. In this study, we compared calibrations with spectra collected from consecutive 10 mm sections to calibrations obtained with spectra collected from unrelated 10 mm sections. Very similar calibration statistics were obtained with both sets of spectra, demonstrating that existing calibration success is not due to an autocorrelation.


2003 ◽  
Vol 33 (12) ◽  
pp. 2297-2305 ◽  
Author(s):  
L R Schimleck ◽  
C Mora ◽  
R F Daniels

The application of near infrared (NIR) spectroscopy to the green wood of radial samples (simulated increment cores) and the development of calibrations for the prediction of wood properties are described. Twenty Pinus taeda L. (loblolly pine) radial strips were characterized in terms of air-dry density, microfibril angle (MFA), and stiffness. NIR spectra were obtained in 10-mm steps from the radial longitudinal and transverse faces of each sample and used to develop calibrations for each property. NIR spectra were collected when the wood was green (moisture content ranged from approximately 100% to 154%) and dried to approximately 7% moisture content. Relationships between measured and NIR estimates for green wood were good; coefficients of determination (R2) ranged from 0.79 (MFA) to 0.85 (air-dry density). Differences between calibrations developed using the radial longitudinal and transverse faces were small. Calibrations were tested on an independent set. Predictive errors were relatively large for some green samples and relationships were moderate; R2p ranged from 0.67 (MFA) to 0.81 (stiffness). Dry wood calibrations demonstrated strong predictive relationships with R2p ranging from 0.87 (air-dry density) to 0.95 (stiffness). NIR spectroscopy has the potential to predict the air-dry density, MFA, and stiffness of 10-mm sections of green P. taeda wood samples.


IAWA Journal ◽  
2007 ◽  
Vol 28 (1) ◽  
pp. 1-12 ◽  
Author(s):  
L.R. Schimleck ◽  
E. Sussenbach ◽  
G. Leaf ◽  
P.D. Jones ◽  
C.L. Huang

The use of calibrated near infrared (NIR) spectroscopy for predicting the microfibril angle (MFA) of Pinus taeda L. (loblolly pine) wood samples is described. NIR spectra were collected from the tangential face of earlywood (EW) and latewood (LW) sections cut from eleven P. taeda radial strips. The MFA of these sections was measured using X-ray diffraction. Calibrations for MFA were determined using all samples combined, EW only and LW only. Relationships were good, with coefficients of determination (R2) ranging from 0.86 (EW) to 0.91 (LW). A calibration for MFA based on NIR spectra collected from sections of 8 strips was used to predict the MFA of sections from the remaining 3 strips. Prediction statistics were strong (R2p = 0.81, SEP= 5.2 degrees, RPDp = 2.23) however errors were greater than those reported previously for studies based on NIR spectra collected from the radial-longitudinal face. The results presented in this study demonstrate that it is possible to use tangential face NIR spectra to determine MFA variation for EW and LW within individual growth rings.


Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Kirsti Cura ◽  
Niko Rintala ◽  
Taina Kamppuri ◽  
Eetta Saarimäki ◽  
Pirjo Heikkilä

In order to add value to recycled textile material and to guarantee that the input material for recycling processes is of adequate quality, it is essential to be able to accurately recognise and sort items according to their material content. Therefore, there is a need for an economically viable and effective way to recognise and sort textile materials. Automated recognition and sorting lines provide a method for ensuring better quality of the fractions being recycled and thus enhance the availability of such fractions for recycling. The aim of this study was to deepen the understanding of NIR spectroscopy technology in the recognition of textile materials by studying the effects of structural fabric properties on the recognition. The identified properties of fabrics that led non-matching recognition were coating and finishing that lead different recognition of the material depending on the side facing the NIR analyser. In addition, very thin fabrics allowed NIRS to penetrate through the fabric and resulted in the non-matching recognition. Additionally, ageing was found to cause such chemical changes, especially in the spectra of cotton, that hampered the recognition.


2011 ◽  
Vol 301-303 ◽  
pp. 1093-1097 ◽  
Author(s):  
Shi Rong Ai ◽  
Rui Mei Wu ◽  
Lin Yuan Yan ◽  
Yan Hong Wu

This study attempted the feasibility to determine the ratio of tea polyphenols to amino acids in green tea infusion using near infrared (NIR) spectroscopy combined with synergy interval PLS (siPLS) algorithms. First, SNV was used to preprocess the original spectra of tea infusion; then, siPLS was used to select the efficient spectra regions from the preprocessed spectra. Experimental results showed that the spectra regions [7 8 18] were selected, which were out of the strong absorption of H2O. The optimal PLS model was developed with the selected regions when 6 PCs components were contained. The RMSEP value was equal to 0.316 and the correlation coefficient (R) was equal to 0.8727 in prediction set. The results demonstrated that NIR can be successfully used to determinate the ration of tea polyphenols to amino acids in green tea infusion.


Detritus ◽  
2020 ◽  
pp. 62-66
Author(s):  
Xiaozheng Chen ◽  
Nils Kroell ◽  
Alexander Feil ◽  
Thomas Pretz

In food and medical packaging, multiple layers of different polymers are combined in order to achieve optimal functional properties for various applications. Flexible multilayer plastic packaging achieves a reduction in weight compared to other packaging products with the same function, saving material and in transportation costs. Recycling of post-industrial multilayer packaging was achieved by some companies, but the available technologies are limited to specific polymer types. For post-consumer waste, recycling of multilayer packaging has not been achieved yet. One of the main challenges in plastic sorting is that the detection and separation of multilayer packaging from other materials is not possible yet. In this study, the possibility to detect and sort flexible multilayer plastic packaging was investigated with near-infrared spectroscopy, which is the state-of-the-art technology for plastic sorting. The results show that from a detection and classification point of view, sorting of monolayer, two- and three-layers samples under laboratory conditions is possible. According to the captured data, the sequence of layers has little influence on the spectra. In case of glossy samples, the spectra are influenced by printed surfaces. With an increase in thickness, the spectra get more characteristic, which makes the classification easier. Our results indicate that the sorting of post-consumer multilayer plastic packaging by main composition is theoretically achievable.


2019 ◽  
Vol 27 (4) ◽  
pp. 286-292
Author(s):  
Chongchong She ◽  
Min Li ◽  
Yunhui Hou ◽  
Lizhen Chen ◽  
Jianlong Wang ◽  
...  

The solidification point is a key quality parameter for 2,4,6-trinitrotoluene (TNT). The traditional solidification point measurement method of TNT is complicated, dangerous, not environmentally friendly and time-consuming. Near infrared spectroscopy (NIR) analysis technology has been applied successfully in the chemical, petroleum, food, and agriculture sectors owing to its characteristics of fast analysis, no damage to the sample and online application. The purpose of this study was to study near infrared spectroscopy combined with chemometric methods to develop a fast and accurate quantitative analysis method for the solidification point of TNT. The model constructed using PLS regression was successful in predicting the solidification point of TNT ([Formula: see text] = 0.999, RMSECV = 0.19, RPDCa = 33.5, [Formula: see text] = 0.19, [Formula: see text] = 0.999). Principal component analysis shows that the model could identify samples from different reactors. The results clearly demonstrate that the solidification point can be measured in a short time by NIR spectroscopy without any pretreatment for the sample and skilled laboratory personnel.


Sign in / Sign up

Export Citation Format

Share Document