scholarly journals Spatial relationships between polymers in Sitka spruce: Proton spin-diffusion studies

Holzforschung ◽  
2006 ◽  
Vol 60 (6) ◽  
pp. 665-673 ◽  
Author(s):  
Clemens Altaner ◽  
David C. Apperley ◽  
Michael C. Jarvis

Abstract The spatial arrangement of polymers in Sitka spruce (Picea sitchensis) was investigated by NMR proton spin-diffusion studies, supplemented by deuterium-exchange experiments monitored by FTIR spectroscopy. The FTIR spectra of earlywood sections after vapour-phase exchange with deuterium oxide showed that 43% of the hydroxyl groups were accessible to deuteration. This value is lower than predicted in the absence of aggregation of cellulose microfibrils into larger units, but greater than the predicted level of deuteration if 3.5-nm microfibrils surrounded by hemicellulose sheaths were aggregated into 4×4 arrays without space for deuterium oxide to penetrate between the microfibrils. The rate of proton spin diffusion between lignin and cellulose was consistent with the presence of microfibril arrays with approximately these dimensions and with lignin located outside them, in both earlywood and latewood. Proton spin-diffusion data for hemicelluloses were complicated by difficulties in assigning signals to glucomannans and xylans, but there was evidence for the spatial association of one group of hemicelluloses, including acetylated glucomannans, with cellulose surfaces, while another group of hemicelluloses was in spatial proximity to lignin. These data are consistent with a number of nanoscale models for the Sitka spruce cell wall, including a model in which glucomannans are associated with microfibril surfaces within the aggregate and water can penetrate partially between these surfaces, and one in which all non-cellulosic polymers and water are excluded from the interior of each microfibril aggregate.


Holzforschung ◽  
2000 ◽  
Vol 54 (6) ◽  
pp. 669-675 ◽  
Author(s):  
S.-T. Chang ◽  
H.-T. Chang ◽  
Y.-S. Huang ◽  
F.-L. Hsu

Summary The acoustic properties of several chemically modified Sitka spruce samples (Picea sitchensis Carr.) were evaluated in the longitudinal direction of wood specimens. Sitka spruce treated with glyoxal and carboxymethyl cellulose (CMC) displayed superior acoustic properties to those obtained by the other treatments. The acoustic converting efficiency (ACE) of the glyoxal-CMC treated Sitka spruce was 1.84 times of that of the untreated specimen and the specific dynamic Young's modulus (E′/r) was retained without decrement after such treatment. Changes in the tanδ of Sitka spruce treated with glyoxal and different concentrations of 1,4-butanediol were opposite. With a low concentration of 1,4-butanediol (10%), the tanδ of the treated specimen decreased as a result of the formation of crosslinked cyclic structures. The potential presence of more alkyl hydroxyl groups in the Sitka spruce, after being treated with glyoxal and a high concentration of 1,4-butanediol (20%), resulted in the increment of tanδ and the decrement of ACE. The impairment of the acoustic properties of Sitka spruce was caused by the introduction of free chains with endwise carboxylic acid groups into cell walls after the succinic anhydride treatment. Slight improvement on the ACE of Sitka spruce was achieved by the reaction with acetic anhydride and the decrease in the tanδ was about 15%, which was attributed to the partial formation of crosslinked matrix. These results revealed the improvement of the acoustic properties of chemically modified wood that was probably achieved only by the formation of network structures between wood components and reagents.





Holzforschung ◽  
2010 ◽  
Vol 64 (4) ◽  
Author(s):  
J. Paul McLean ◽  
Robert Evans ◽  
John R. Moore

Abstract Sitka spruce (Picea sitchensis) is the most widely planted commercial tree species in the United Kingdom and Ireland. Because of the increasing use of this species for construction, the ability to predict wood stiffness is becoming more important. In this paper, a number of models are developed using data on cellulose abundance and orientation obtained from the SilviScan-3 system to predict the longitudinal modulus of elasticity (MOE) of small defect-free specimens. Longitudinal MOE was obtained from both bending tests and a sonic resonance technique. Overall, stronger relationships were found between the various measures of cellulose abundance and orientation and the dynamic MOE obtained from the sonic resonance measurements, rather than with the static MOE obtained from bending tests. There was only a moderate relationship between wood bulk density and dynamic MOE (R2=0.423), but this relationship was improved when density was divided by microfibril angle (R2=0.760). The best model for predicting both static and dynamic MOE involved the product of bulk density and the coefficient of variation in the azimuthal intensity profile (R2=0.725 and 0.862, respectively). The model parameters obtained for Sitka spruce differed from those obtained in earlier studies on Pinus radiata and Eucalyptus delegatensis, indicating that the model might require recalibration before it can be applied to different species.





1985 ◽  
Vol 27 (6) ◽  
pp. 729-734 ◽  
Author(s):  
Francis C. Yeh ◽  
Sven Rasmussen

Ten-year height growth for Picea sitchensis (Bong.) Carr. was studied in a progeny test of 42 wind-pollinated families from seven stands on the northwest coast of Vancouver Island. Although stand and family-within-stand effects were significant sources of variation, 79% of the phenotypic variance in 10-year height was associated with differences among trees within family plots. Estimates of heritability ([Formula: see text], [Formula: see text], and [Formula: see text]) indicate that a combination of stand, family-within-stand, and progeny-within-family selection will be effective for a long-term breeding program to increase tree heights in Sitka spruce.Key words: Picea, heritability, quantitative.





2013 ◽  
Vol 43 (1) ◽  
pp. 1-6 ◽  
Author(s):  
S.G. Kennedy ◽  
A.D. Cameron ◽  
S.J. Lee

The trend towards shorter rotations in planted conifer stands has resulted in a reduction in the proportion of mature wood relative to juvenile core wood, raising concerns that the mechanical performance of sawn battens will be affected. The potential to improve the wood quality of the juvenile core of Sitka spruce (Picea sitchensis (Bong.) Carrière) without compromising growth rate was investigated. Rapid and inexpensive indirect methods of assessing wood properties on standing trees using a Pilodyn gun and acoustic velocity were compared with direct measurements made on wood samples cut from the juvenile core. Strong genetic correlations were observed between Pilodyn gun values and direct measures of density (–0.76) and between the square of acoustic velocity and modulus of elasticity (0.73). The genetic correlation between the square of acoustic velocity and microfibril angle was also strong (–0.84). These results suggest that indirect assessments of wood properties within juvenile core wood are sufficiently reliable for these techniques to be used in the Sitka spruce breeding programme. Although a strong negative genetic correlation between diameter at breast height and density was noted (–0.79), sufficient variation exists within the breeding population to select families with both good growth rate and high modulus of elasticity wood.



1976 ◽  
Vol 54 (14) ◽  
pp. 2228-2230 ◽  
Author(s):  
Ted Schaefer ◽  
J. Brian Rowbotham

The conformational preferences in CCl4 solution at 32 °C of the hydroxyl groups in bromine derivatives of 1,3-dihydroxybenzene are deduced from the long-range spin–spin coupling constants between hydroxyl protons and ring protons over five bonds. Two hydroxyl groups hydrogen bond to the same bromine substituent in 2-bromo-1,3-dihydroxybenzene but prefer to hydrogen bond to different bromine substituents when available, as in 2,4-dibromo-1,3-dihydroxybenzene. When the OH groups can each choose between two ortho bromine atoms, as in 2,4,6-tribromoresorcinol, they apparently do so in a very nearly statistical manner except that they avoid hydrogen bonding to the common bromine atom.



Sign in / Sign up

Export Citation Format

Share Document