Xylitol production from olive-pruning debris by sulphuric acid hydrolysis and fermentation with Candida tropicalis

Holzforschung ◽  
2011 ◽  
Vol 65 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Juan Francisco García Martín ◽  
Sebastián Sánchez ◽  
Vicente Bravo ◽  
Manuel Cuevas ◽  
Luc Rigal ◽  
...  

AbstractThe debris of olive pruning is a renewable, low-cost and widely available agricultural waste. Its biochemical conversion by hydrolysis and fermentation was undertaken in the present study. Diluted acid hydrolysis was conducted in a heterogeneous stirred tank reactor at 90°C and at a low sulphuric acid concentration (0.0–1.0 N) for 300 min. To increase thed-xylose/d-glucose ratio into the hydrolysate, in another experiment amorphous cellulose and extracts were removed by means of a pretreatment in an extruder with 1 N H2SO4at 70°C before the acid hydrolysis. The fermentation of hydrolysates was performed under microaerobic conditions in a batch bioreactor at 30°C and pH 5 withCandida tropicalisNBRC 0618. The controlled fermentation parameters included maximum specific growth rate, biomass productivity, rate of the specific substrate uptake, rates of specific ethanol and xylitol production, and overall yield of ethanol and xylitol. In the presence of 1.0 N H2SO4, the fermentation of the pretreated hydrolysate led to specific xylitol production rates and overall xylitol yield (0.1 g g-1 h for t=25 h; 0.49 g g-1, respectively) higher than those achieved without pretreatment (0.03 g g-1 h for t=25 h; 0.39 g g-1, respectively). Under these conditions, 53 g xylitol kg-1of dry olive-pruning debris was obtained from the pretreated culture, whereas without pretreatment 70 g ethanol and 34 g xylitol were recovered.

2019 ◽  
Vol 32 ◽  
pp. 1-6
Author(s):  
Raed S. Khudhair ◽  
Elham I. Tami

Xylan produced various agricultural residues including wheat (Furat, Abugraib and Abaa), Papyrus and Sunflower stalks in different ways, including the use of diluted acid, dilute base and self-degradation. The results showed that the acidic method in the production of xylan from various agricultural residues compared with other methods was superior, the highest quantity of xylan 187.6 µg.ml-1 was obtained from the agricultural waste of Papyrus, while it was 157.6, 157.6, 161.6 and 161.3 µg.ml-1 of wheat category of furat, wheat Abu Ghraib, wheat Abaa and sunflower stalks respectively, based on the results obtained, the xylan produced by the acidic method of the different agricultural residues was selected to determine the optimal carboon source for production of xylanase using bacteria Bacillus subtilis strain RS1 locally isolated. After the production of xylitol, the descriptive diagnosis was performed using an HPLC device, depending on the time of the 38.4 minute time lapse reaction of the standard Xylitol and compared with the time of the production of Candida tropicalis, the amount of the processed xylitol was 8.3 µg.ml-1, the calculated xylitol was compared standard xylitol


Jurnal Kimia ◽  
2016 ◽  
Author(s):  
Devi Esteria Hasianna Purba ◽  
Iryanti Eka Suprihatin ◽  
A.A.I.A. Mayun Laksmiwati

Ethanol fermented from potato peels is proposed as one alternative source of renewable energy called bioethanol. In this research bioethanol was produced through four stages namely acid hydrolysis, detoxification, fermentation and distillation. The acid hydrolysis process was carried out using sulphuric acid at 100oC for 60 minutes. The detoxification process was carried out by adding NH4OH into the hydrolyzate prior to fermentation. Distillation was performed up to 100oC and the distillate with the BP of 78-84oC was determined for its ethanol content using gas chromatography. The ethanol produced from 5 grams of dried potato peels through fermentation for 4, 5, 6, and 7 days 3.54%; 4,85%; 5,35%; and 6.15% respectively.


2004 ◽  
Vol 26 (8) ◽  
pp. 623-627 ◽  
Author(s):  
Teak-Bum Kim ◽  
Yong-Joo Lee ◽  
Pil Kim ◽  
Chang Sup Kim ◽  
Deok-Kun Oh

PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6186 ◽  
Author(s):  
Ting-Ting Jiang ◽  
Yan Liang ◽  
Xiang Zhou ◽  
Zi-Wei Shi ◽  
Zhi-Jun Xin

Background Sweet sorghum bagasse (SSB), comprising both a dermal layer and pith, is a solid waste generated by agricultural activities. Open burning was previously used to treat agricultural solid waste but is harmful to the environment and human health. Recent reports showed that certain techniques can convert this agricultural waste into valuable products. While SSB has been considered an attractive raw material for sugar extraction and the production of value-added products, the pith root in the SSB can be difficult to process. Therefore, it is necessary to pretreat bagasse before conventional hydrolysis. Methods A thorough analysis and comparison of various pretreatment methods were conducted based on physicochemical and microscopic approaches. The responses of agricultural SSB stem pith with different particle sizes to pretreatment temperature, acid and alkali concentration and enzyme dosage were investigated to determine the optimal pretreatment. The integrated methods are beneficial to the utilization of carbohydrate-based and unknown compounds in agricultural solid waste. Results Acid (1.5−4.5%, v/v) and alkali (5−8%, w/v) reagents were used to collect cellulose from different meshes of pith at 25–100 °C. The results showed that the use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 °C resulted in 32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and 6.5% (w/v) alkali at 50 °C for enzymolysis was performed with the optimal enzyme ratio. An analysis of the surface topography and porosity before and after pretreatment showed that both the pore size of the pith and the amount of exposed cellulose increased as the mesh size increased. Interestingly, various compounds, including 42 compounds previously known to be present and 13 compounds not previously known to be present, were detected in the pretreatment liquid, while 10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were found in the enzymatic solution. The total monosaccharide content of the pith was 149.48 ± 0.3 mg/g dry matter. Discussion An integrated technique for obtaining value-added products from sweet sorghum pith is presented in this work. Based on this technique, lignin and hemicellulose were effectively broken down, amorphous cellulose was obtained and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides. A total of 42 compounds previously found in these materials, including alcohol, ester, acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds, were detected in the pretreatment pith. In addition, several compounds that had not been previously observed in these materials were found in the pretreatment solution. These findings will improve the transformation of lignocellulosic biomass into sugar to create a high-value-added coproduct during the integrated process and to maximize the potential utilization of agricultural waste in current biorefinery processing.


Author(s):  
Gurusamy Muneeswaran ◽  
Sanjay K. S. Patel ◽  
Sanath Kondaveeti ◽  
Ramasamy Shanmugam ◽  
Krishnasamy Gopinath ◽  
...  

1975 ◽  
Vol 28 (3) ◽  
pp. 673 ◽  
Author(s):  
DJ Collins ◽  
C Lewis ◽  
JM Swan

Treatment of cyclododecane-r-1,c-5,c-9-triyl tris(p-toluenesulphonate) with sodium azide in dimethyl-formamide at 100� for 6 h gave the corresponding cis,cis-triazide which upon hydrogenation or reduction with lithium aluminium hydride gave cyclododecane-r-1,c-5,c-9-triamine, isolated as the tris-salicylidene derivative. Acid hydrolysis of this, removal of the salicylaldehyde, and treatment of the aqueous solution with sodium carbonate and 2,3-dimethoxybenzoyl chloride gave r-1,c-5,c- 9-tris(2,3-dimethoxybenzamido)cyclododecane. ��� Treatment of (E,E,E)-cyclododeca-1,5,9-triene with an excess of acetonitrile and sulphuric acid at room temperature for three days gave 18% of (E,E)-1-acetamidocyclododeca-4,8-diene; no di- or tri-amides were isolated.


2011 ◽  
Vol 101 (2) ◽  
pp. 393-402 ◽  
Author(s):  
Swati Misra ◽  
Shailendra Raghuwanshi ◽  
Pritesh Gupta ◽  
Kakoli Dutt ◽  
R. K. Saxena

Author(s):  
V. S. Boltovsky

Prospects for the development of hydrolysis production are determined by the relevance of industrial use of plant biomass to replace the declining reserves of fossil organic raw materials and increasing demand for ethanol, especially for its use as automobile fuel, protein-containing feed additives that compensate for protein deficiency in feed production, and other products. Based on the review of the research results presented in the scientific literature, the analysis of modern methods of liquid-phase acid hydrolysis of cellulose and various types of plant raw materials, including those that differ from traditional ones, is performed. The main directions of increasing its efficiency through the use of new catalytic systems and process conditions are identified. It is shown that the most promising methods for obtaining monosaccharides in hydrolytic processing of cellulose and microcrystalline cellulose, pentosan-containing agricultural waste and wood, are methods for carrying out the process at elevated and supercritical temperatures (high-temperature hydrolysis), the use of new types of solid-acid catalysts and ionic liquids. 


Sign in / Sign up

Export Citation Format

Share Document