IL-37 affects the occurrence and development of endometriosis by regulating the biological behavior of endometrial stromal cells through multiple signaling pathways

2018 ◽  
Vol 399 (11) ◽  
pp. 1325-1337 ◽  
Author(s):  
Jianfa Jiang ◽  
Kenan Yu ◽  
Zhaoying Jiang ◽  
Min Xue

Abstract Endometriosis (EMs) is a chronic inflammatory condition. Interleukin (IL)-37 is a member of the IL-1 family and an anti-inflammatory cytokine. This study aimed to evaluate the possible role of IL-37 in the EMs pathogenesis. We investigated the in vivo effect of IL-37 on EMs by injection with recombinant human IL-37 (rhIL-37) into EMs mice. Furthermore, we evaluated the in vitro effects of IL-37 on proliferation, adhesion, migration and invasiveness of endometrial stromal cells (ESCs), and explored whether Wnt/β-catenin and mitogen-activated protein kinase (MAPK) pathways were involved in this process. In cultured ESCs, IL-37 overexpression significantly suppressed both protein and mRNA expression of the inflammation-associated cytokines, including IL-1β, IL-6, IL-10 and tumor necrosis factor (TNF-α). Furthermore, IL-37 overexpression significantly inhibited ESCs proliferation, adhesion, migration, invasion and the activity of matrix metalloproteinase (MMP)-2 and MMP-9. In contrast, knockdown of IL-37 exerted the opposite effects. Importantly, the IL-37-mediated action in ESCs was through inactivation of Wnt/β-catenin, p38 MAPK, extracellular signal-related kinases MAPK and c-Jun N-terminal kinase MAPK pathways. Moreover, EMs mice treated with rhIL-37 showed the decreased endometriotic-like lesion size and lesion weight, lower expression of IL-1β, IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), soluble intercellular adhesion molecule-I (ICAM-I) and MMP-2/9 activity in peritoneal fluid compared with the wide type (WT) EMs mice. These findings suggest that IL-37 suppresses cell proliferation, adhesion, migration and invasion of human ESCs through multiple signaling pathways, thereby affecting the occurrence and development of EMs.

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1010018
Author(s):  
Jianghong Cheng ◽  
Jia Liang ◽  
Yingzhe Li ◽  
Xia Gao ◽  
Mengjun Ji ◽  
...  

Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.


2020 ◽  
Author(s):  
Chuanjia Yang ◽  
Siyang Zhang ◽  
Xiaoying Chang ◽  
Yonglian Huang ◽  
Dongxu Cui ◽  
...  

Abstract Background Heparanase (HPSE) is an endo-β-D-glucuronidase, which is found overexpressed in various human cancers. The purpose of our work was to investigate the possible role of HPSE and the involved signaling molecules in the development of papillary thyroid carcinoma (PTC). Methods The expression of HPSE was examined in 80 samples of PTC by immunohistochemistry. In cell studies, the expression plasmid of HPSE and RNA interference with shRNA specific for HPSE were used to elucidate the effects of HPSE on proliferation, apoptosis, migration and invasion in PTC cells of B-CPAP and KTC-1. The probable downstream signaling molecules of HPSE were also explored. Results 75.0% (60 out of 80) of PTC samples was detected high expression of HPSE, which was significantly correlated with tumor size, lymph node metastasis and stage status. In cell studies, the upregulation of HPSE significantly promoted cell proliferation, migration and invasion of B-CPAP and KTC-1 cells, and interfered with cell apoptosis. On the contrary, knockdown of HPSE exhibited the opposite effects. Compared with the parental cells, HPSE silencing cells showed attenuated capabilities of proliferation, migration and invasion, yet the apoptotic rate of transfected cells was increased. The activations of various signaling molecules correlated with cell biological behavior were found to be regulated by HPSE upregulation or knockdown. Conclusions Our results suggested that HPSE probably contributed to the progression and metastasis of PTC, which were associated with multiple signaling pathways. HPSE could be a potent molecular target for the therapeutic strategy of PTC.


2019 ◽  
Author(s):  
Chuanjia Yang ◽  
Siyang Zhang ◽  
Xiaoying Chang ◽  
Yonglian Huang ◽  
Dongxu Cui ◽  
...  

Abstract Background Heparanase (HPSE) is an endo-β-D-glucuronidase, which is found overexpressed in various human cancers. The purpose of our work was to investigate the possible role of HPSE and the involved signaling molecules in the development of papillary thyroid carcinoma. Methods In this study, the expression plasmid of HPSE and RNA interference with shRNA specific for HPSE were used to elucidate the effects of HPSE on proliferation, apoptosis, migration and invasion in papillary thyroid carcinoma cells of B-CPAP. The probable downstream signaling molecules of HPSE were also explored. Results The results showed that upregulation of HPSE significantly promoted cell proliferation, migration and invasion of B-CPAP cells, and interfered with cell apoptosis. On the contrary, knockdown of HPSE exhibited the opposite effects. Compared with the parental cells, HPSE silencing cells showed attenuated capabilities of proliferation, migration and invasion, yet the apoptotic rate of transfected cells was increased. The activations of various signaling molecules correlated with cell biological behavior were found to be regulated by HPSE upregulation or knockdown. Conclusions Our results suggested that HPSE probably contributed to the progression and metastasis of papillary thyroid carcinoma, which were associated with multiple signaling pathways. HPSE could be a potent molecular target for the therapeutic strategy of papillary thyroid carcinoma.


Author(s):  
Dariusz Szukiewicz ◽  
Aleksandra Stangret ◽  
Carmen Ruiz-Ruiz ◽  
Enrique G. Olivares ◽  
Olga Soriţău ◽  
...  

AbstractEndometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis.


Author(s):  
Xiaoou Li ◽  
Wenqian Xiong ◽  
Xuefeng Long ◽  
Xin Dai ◽  
Yuan Peng ◽  
...  

Abstract N6-methyladenosine (m6A), one of the most abundant RNA modifications, is involved in the progression of many diseases, but its role and related molecular mechanisms in endometriosis remain unknown. To address these issues, we detected m6A levels in normal, eutopic and ectopic endometrium and found the m6A levels decreased in eutopic and ectopic endometrium compared with normal endometrium. In addition, we proved that methyltransferase-like 3 (METTL3) downregulation accounted for m6A reduction in endometriosis. Furthermore, we observed that METTL3 knockdown facilitated the migration and invasion of human endometrial stromal cells (HESCs), while METTL3 overexpression exerted opposite effects, suggesting that METTL3 downregulation might contribute to endometriosis development by enhancing cellular migration and invasion. Mechanistically, METTL3-dependent m6A was involved in the DGCR8-mediated maturation of primary microRNA126 (miR126, pri-miR126). Moreover, miR126 inhibitor significantly enhanced the migration and invasion of METTL3-overexpressing HESCs, whereas miR126 mimics attenuated the migration and invasion of METTL3-silenced HESCs. Our study revealed the METTL3/m6A/miR126 pathway, whose inhibition might contribute to endometriosis development by enhancing cellular migration and invasion. It also showed that METTL3 might be a novel diagnostic biomarker and therapeutic target for endometriosis.


Sign in / Sign up

Export Citation Format

Share Document