Effect of Processing Parameters on Plasma Jet and In-flight Particles Characters in Supersonic Plasma Spraying

2016 ◽  
Vol 35 (8) ◽  
pp. 775-786 ◽  
Author(s):  
Pei Wei ◽  
Zhengying Wei ◽  
Guangxi Zhao ◽  
Y. Bai ◽  
Chao Tan

AbstractIn supersonic plasma spraying system (SAPS), heat transfer from arc plasma is characterized by several distinct features, such as transport of dissociation and ionization energy and of electrical charges in addition to mass transport. The thermodynamic and transport properties of plasma jet were influenced by several main parameters such as primary gas flow rate, the H2 vol.% and current intensity A. This paper first analyzes the effect of these parameters on the temperature and velocity of plasma jet theoretically. Further, the loading particles were melted and accelerated by plasma jet. Effects of several main parameters such as carrier gas flow rate, the H2 vol.%, the current intensity, the voltage and the spraying distance on temperature and velocity of in-flight particle were studied experimentally. The average maximum temperature and velocity of in-flight particle at any given parameters were systematically quantified. Optimal SAPS process parameters were given in this paper. In general, increasing the particles impacting velocity and surface temperature can improve the maximum spreading factor and decrease the coating porosity.

Author(s):  
S. Janisson ◽  
A. Vardelle ◽  
J.F. Coudert ◽  
B. Pateyron ◽  
P. Fauchais ◽  
...  

Abstract In D.C. plasma guns used for plasma spraying, the properties of the plasma forming-gas control, to a great extent, the characteristics of the plasma jet and the momentum, heat and mass transfer to the particles injected in the flow. This paper deals with mixtures of argon, helium and hydrogen and the effect of the volume composition of these mixtures on the dynamic and static behavior of the plasma jet. Both were investigated from the measurements of arc voltage and gas velocity. Correlations between these parameters and the operating variables (arc current, gas flow rate, gas mixture composition) were established from a dimensional analysis. The results were supported by the calculation of the thermodynamic and transport properties of the ternary gas mixtures used in this study.


2015 ◽  
Vol 17 (9) ◽  
pp. 738-742 ◽  
Author(s):  
Xuechen Li ◽  
Pengying Jia ◽  
Cong Di ◽  
Wenting Bao ◽  
Chunyan Zhang

Author(s):  
Woo-Sik Kim ◽  
Young-Pyo Kim ◽  
Kyu Hwan Oh

The experimental and numerical study has been conducted on the sleeve-repair welding of API 5L X65 pipeline. In order to simulate the in-service condition, the internal pressure of 45kgf/cm2 was applied using a nitrogen gas. SMAW and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The finite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ from the simulation of 1-pass sleeve-fillet welding.


Author(s):  
Sehwan Jhin ◽  
Yunjung Kim ◽  
Won Young Lee ◽  
Dong Jun Jin ◽  
Hong-Keun Yu ◽  
...  

2014 ◽  
Vol 42 (10) ◽  
pp. 2752-2753 ◽  
Author(s):  
Li Li ◽  
Christophe Leys ◽  
Nikolay Britun ◽  
Rony Snyders ◽  
Anton Y. Nikiforov

2018 ◽  
Vol 15 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Baghdad Science Journal

In this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the argon gas temperature, where argon gas temperature the exceed 350 ? as maximum value and study the effect of gas flow rate on the optical properties


2018 ◽  
Vol 15 (35) ◽  
pp. 117-124
Author(s):  
Kadhim A. Aadim

In this study, method for experimentally determining the electron density (ne) and the electron temperature (Te) in the atmospheric Argon plasma jet is used; it is based on optical emission spectroscopy (OES). Boltzmann plot method used to calculate these parameters measured for different values of gas flow rate. The results show that the electron temperature decreasing with the increase of gas flow rate also indicates an increasing in the electron density of plasma jet with increasing of gas flow rate.


Sign in / Sign up

Export Citation Format

Share Document