scholarly journals Limit Load Solutions for SEN(T) Specimens – 2D and 3D Problems

2016 ◽  
Vol 21 (3) ◽  
pp. 569-580
Author(s):  
M. Graba

Abstract This paper deals with the limit load solutions for SEN(T) specimens under plane stress and plane strain conditions. The existing solutions are verified using the Finite Element Method and extended to 3D cases. The numerical results can be used to assess the strength of a structural element with a defect. This paper is a verification and extension of the author’s previous paper [2].

2008 ◽  
Vol 45 (3) ◽  
pp. 393-407
Author(s):  
Chun Fai Leung ◽  
Rui Fu Shen

Gravity caissons were employed as part of the wharf front structures for a container port terminal in Singapore. This paper reports the movements of eight consecutive gravity caissons supported on sand compaction piles (SCPs) with highly variable lengths of penetration. It is established that the caisson movements increase with an increase in the length of the SCP, as longer SCPs are necessary when hard strata are at greater depth. The large caisson movements observed during caisson infilling and backfilling do not pose a concern because the wharf deck beams connecting adjacent caissons can be adjusted. However, the caisson movements under service loads would affect the operation of the overlying quay cranes on top of the caissons. The present field study reveals that preloading the caissons is effective in reducing the caisson movements under service loads because the observed caisson movements are insignificant during subsequent unloading–reloading of the caissons. Back-analysis using the finite element method (FEM) shows that the observed caisson movements at different construction stages can be reasonably replicated. The numerical results are also used to evaluate the caisson tilt angle, which could not be measured in the present field study. The caisson tilt is found to be independent of the length of SCPs underneath a caisson.


Author(s):  
Darrell W. Pepper ◽  
Jichun Li

In this paper, we develop a general multiblock mixed finite element method for solving 2D and 3D elliptic problems by different unstructured grids on both serial and parallel platforms. Detailed implementations and numerical results are presented.


1971 ◽  
Vol 93 (2) ◽  
pp. 445-454 ◽  
Author(s):  
C. H. Lee ◽  
Shiro Kobayashi

Detailed studies of the deformation characteristics in axisymmetric upsetting and plane-strain side-pressing were attempted by the finite element method. Solutions were obtained up to a 33 percent reduction in height in axisymmetric upsetting and up to a 19 percent reduction in height in side-pressing, under conditions of complete sticking at the tool-workpiece interface. Load-displacement curves, plastic zone development, and strain and stress distributions were presented, and some of the computed solutions were compared with those found experimentally.


2011 ◽  
Vol 250-253 ◽  
pp. 3872-3875
Author(s):  
Rong Jian Li ◽  
Wen Zheng ◽  
Juan Fang ◽  
Gao Feng Che

The influence of structural strength on the lining moment of tunnel should be properly evaluated in order to meet the engineering demand in loess area. It is essential to analyze and evaluate the lining moment of tunnel by means of the finite element method under the condition of the different local weakening of structural strength in loess. Firstly, some researches on the structural strength of loess tunnel are reviewed. Then, some different cases of the local weakening of structural strength in loess are analyzed in this paper. Numerical results not only indicate that the lining moment of tunnel tends to change obviously with the different local weakening of the structural strength, but also reveal that the weakening location of structural strength has important effect on the distribution and redistribution of the lining moment of tunnel.


2020 ◽  
Vol 7 (10) ◽  
pp. 458-470
Author(s):  
Benício de Morais Lacerda ◽  
Alex Gomes Pereira

This study aimed to investigate numerically the validation of the use of the free license program Code_ Aster, with numerical results of the SolidWorks program. For this, four metal elements were modeled, all of them subjected to the tensile stress, they are: a cylindrical bar, two plates with a hole and a metal console. The objective is to validate the use of a free program for analysis of structural elements in engineering office projects and institutional research to verify if the results obtained from the free program show significant differences in the numerical application of a commercial program. All programs have in their design of analysis the use of the finite element method (FEM). The finite element method (FEM) consists to divide a continuous object into a finite number of parts. This allows a complex problem to be transformed into a set of simple problems (finite element) in addition to solving a set of finite elements by approximations with good precision of the results and to model the problem in a real physical way. It was observed that the numerical results between the SolidWorks program and the free program Code_ Aster were close with differences of less than 5%, which indicates the reliability of the use of Code_ Aster for numerical analyzes of structural elements of engineering projects and also in institutional research.


2018 ◽  
Vol 157 ◽  
pp. 06002
Author(s):  
Jozef Bocko ◽  
Pavol Lengvarský

The paper is devoted to the problems related to buckling analysis of graphene sheets without and with vacancies in the structure under different boundary conditions. The analysis was performed by the classical numerical treatment – the finite element method (FEM). The graphene sheets were modelled by beam elements. Interatomic relations between carbon atoms in the structure were represented by the beams connecting individual atoms. The behaviour of the beam as structural element was based on the properties that were established from relations of molecular mechanics. The vacancies in single layer graphene sheets (SLGSs) were created by elimination of randomly chosen atoms and corresponding beam elements connected to the atoms in question. The computations were accomplished for different percentage of atom vacancies and the results represent an obvious fact that the critical buckling force decreases for increased percentage of vacancies in the structure. The numerical results are represented in form of graphs.


Author(s):  
R Safdarian

The tube wrinkling, ovality, and fracture are the main defects in the rotary draw bending process, which happen by incorrect selection of process parameters. In the present study, the wrinkling, fracture, and ovality of BS 3059 steel tube in the rotary draw bending were investigated using the experimental tests and the finite element method. The numerical results were verified using the experimental tests for tube ovality prediction. The tube fracture was predicted using the Gurson–Tvergaard–Needleman damage model in the rotary draw bending numerical simulations. The design of experiment based on the response surface method and the finite element method was used to investigate the effects of rotary draw bending parameters such as boosting velocity of pressure die, mandrel position, number of balls, and pressure of pressure die on the wrinkling, fracture, and tube ovality. The experimental and numerical results indicated that the mandrel position was one of the main parameters, which influence the tube ovality. The tube ovality and wrinkling increased with the increase in the mandrel position.


Sign in / Sign up

Export Citation Format

Share Document