Gas-solid Flow Behaviors in a Pressurized Multi-stage Circulating Fluidized Bed with Geldart Group B Particles

Author(s):  
Wei Nie ◽  
Rongtao Feng ◽  
Junguo Li ◽  
Zhenhua Hao ◽  
Haijuan Zhan ◽  
...  

Abstract A comprehensive study of gas-solids flow behaviors was conducted in a novel multi-stage circulating fluidized bed (MCFB). Experiments were carried out in a cold model apparatus (a jetting fluidized bed, JFB, of 0.3 m diameter and 1.95 m tall, a riser of 0.15 m diameter and 12 m tall) at different elevated pressure, solids circulation rates and gas velocities. Geldart group B polystyrene particles of 400 μm in diameter and 1020 kg/m3 in density were used as bed materials. The characteristic of L-valve, axial and radial distributions of solids holdup were systematically tested at elevated pressures by pressure transducers with the frequency of 100 Hz and model PC6M of the optical fiber probes. Operating the L-valve at elevated pressure needs less cross-section average gas velocity compared to that at atmospheric pressure. Experimental results showed that under elevated pressure and high solids flow rate, the MCFB could more easily couple JFB with a riser, where the solids that entered could form three-level step-by-step supplement entrainment and multi-flow regimes formed. Besides, increasing operating pressure led to a higher the apparent solids holdup and local solids holdup. The local solids profiles behaved less uniform distribution at elevated pressure due to decreasing the gas velocity.

2012 ◽  
Vol 35 (5) ◽  
pp. 904-910 ◽  
Author(s):  
S. Yin ◽  
B. Jin ◽  
W. Zhong ◽  
Y. Lu ◽  
Y. Zhang ◽  
...  

2017 ◽  
Vol 21 (2) ◽  
pp. 1093-1104 ◽  
Author(s):  
Yerbol Sarbassov ◽  
Azd Zayoud ◽  
Pinakeswar Mahanta ◽  
Sai Gu ◽  
Panneerselvam Ranganathan ◽  
...  

Pressurized circulating fluidized bed technology is a potentially promising development for clean coal technologies. The current work explores the hydrodynamics of a small-scale circulating fluidized bed at elevated operating pressures ranging from 0.10 to 0.25 MPa. The initial experiments were performed at atmospheric pressure with air and O2/CO2 environments as the fluidization gas to simulate the hydrodynamics in a circulating fluidized bed. A comparison between the effects of air and O2/CO2 mixtures on the hydrodynamics was outlined in this paper for particles of 160 ?m diameter. A small but distinct effect on axial void-age was observed due to the change in gas density in the dense zone of the bed at lower gas velocity, while only minimal differences were noticed at higher gas velocities. The hydrodynamic parameters such as pressure drop and axial voidage profile along the height were reported at two different bed inventories (0.5 and 0.75 kg) for three mean particle sizes of 160, 302, and 427 ?m and three superficial gas velocities. It was observed that the operating pressure had a significant effect on the hydrodynamic parameters of bed pressure drop and axial bed void-age profiles. The effect of solids loading resulted in an exponential change in pressure drop profile at atmospheric pressure as well as at elevated pressure. The experimental results on hydrodynamic parameters are in reasonable agreement with published observations in the literature.


2019 ◽  
Vol 196 ◽  
pp. 1-13 ◽  
Author(s):  
Feng Rongtao ◽  
Li Junguo ◽  
Dong Libo ◽  
Hao Zhenhua ◽  
Ba Zhongren ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 36642-36655 ◽  
Author(s):  
Rong Zhang ◽  
Zhenhua Hao ◽  
Zhiyu Wang ◽  
Xiaodong Huo ◽  
Junguo Li ◽  
...  

This paper investigated the distribution of secondary air after injection into a multi-stage conversion fluidized bed (MFB) cold model.


Author(s):  
Hong-Shun Li ◽  
Yi-Jun Wang ◽  
Shi-Ping Jin

Solids flow pattern in the bottom zone of a rectangular cross-section CFB was investigated by using hot particles as the tracer. The experiments were carried out in a cold model circulating fluidized bed. The riser has an inner cross-section of 0.3 m by 0.5 m and a height of 5.8 m. The solids were returned into the riser at a height of 0.75 m above the air distributor within an angle of about 40 degree. Quartz sand was used as the bed material. The hot particles were also quartz sand but with a little smaller size. Specially designed miniature electrically heating devices were installed flush with the inner bed wall or inside the bed. At each run, about 10–15 cm3 hot particles were slowly pulled into the bed. The temperature response around the device was measured with four copper-constantan thermocouples. Based on the experimental results, a 3-D core-annulus model describing the solids flow pattern in the bottom zone of the CFB riser is proposed.


2020 ◽  
Vol 366 ◽  
pp. 470-476 ◽  
Author(s):  
Daoyin Liu ◽  
Jinding Hu ◽  
Jialong Song ◽  
Cai Liang ◽  
Chuanlong Xu ◽  
...  

2012 ◽  
Vol 600 ◽  
pp. 261-264
Author(s):  
Teng Ge Mi ◽  
Ying Zhao ◽  
Chang Qing Dong ◽  
Wei Liang Cheng

In this paper, a dual fluidized bed has been established. The effect of bed material build-up height and gas velocity on the solid circulation rate of CFB (circulating fluidized bed) and BFB (bubble fluidized bed) has been studied. The results show that the solid circulation rate is increased with the increasing of gas velocity Uc and the bed material build-up height. Bed material build-up height of BFB and CFB is changed with the changing of gas velocity Uc. The bed material heights of CFB and BFB have been also investigated in this experiment.


2018 ◽  
Vol 57 (33) ◽  
pp. 11439-11451 ◽  
Author(s):  
Esmail R. Monazam ◽  
Ronald W. Breault ◽  
Lawrence J. Shadle ◽  
Justin M. Weber

Author(s):  
Xiaofang Wang ◽  
Baosheng Jin ◽  
Wenqi Zhong ◽  
Mingyao Zhang ◽  
Yaji Huang ◽  
...  

A high-flux circulating fluidized bed coal gasifier cold model which consists of a vertical riser (0.06m-I.D.×5m-high), two downcomers (0.04m-I.D.×3.5m-high and 0.1m-I.D.×3m-high), an inertial separator, a cyclone and two solid feeding devices were established. Geldart group B particles with mean diameters of 140 ?m and densities of 2700 kg/m3 were used as bed materials. Flow behaviors were investigated with the solid mass flux ranges from 108 to 395 kg/m2 and the superficial gas velocity ranges from 7.6 to 10.2 m/s. The pressure drop, apparent solids holdups, average slip velocity and solids-to-air mass flow ratio under different operating conditions were obtained. The results showed that the riser total pressure drop increased sharply with bed height in the low elevation but slowly in the high elevation, since the solids holdup was higher in the low region than that in the high region. The solids holdup increased with the increasing of solids mass flux while it decreased with increasing superficial gas velocity. A dense suspension upflow flow (DSU) structure was found only existing in the low elevation while the rest upper region was still in the dilute phase, and the length of DSU flow structure increased with solids mass flux. The average slip velocity was found to be the strong function of apparent solids holdup; increasing apparent solids holdup leads to the increase of slip velocity. The riser total pressure drop and apparent solids holdup increase with the solids-to-air mass flow ratio.


Sign in / Sign up

Export Citation Format

Share Document