solids holdup
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Chengxiu Wang ◽  
Mengjie Luo ◽  
Xin Su ◽  
Xingying Lan ◽  
Zeneng Sun ◽  
...  

Particle clusters in CFB risers were identified from the instantaneous solids holdup signals by a new sliding-window based signal processing method. By shifting the sliding time window and calculating the mean and the standard deviation within it, a non-linear threshold curve for identifying the clusters was derived instead of the conventional constant threshold. The optimal sliding window size was determined as Wb = 1024 data points based on the bisection method on the entire piece of signals. Using the proposed method, a more realistic characterization of the clusters in both the HDCFB and LDCFB was obtained by considering the bulk fluctuation of the gas-solids flow. The clusters in the HDCFB have higher solids holdup and lower velocity than that in the LDCFB. The HDCFB is also found to have a greater number of loose clusters for better gas-solids contacting and exchanges in the center of the riser.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1343
Author(s):  
Xiao Yang ◽  
Chengxiu Wang ◽  
Xingying Lan ◽  
Jinsen Gao

In view of the current status of catalytic cracking flue gas treatment, it is necessary to study the flow environment of desulfurization ash particles, which are a type of Geldart C particle, in a circulating fluidized bed (CFB) for semi-dry flue gas desulphurization using CFB technology. This study investigated the flow characteristics of desulphurization ash particles in a riser with an inner diameter of 70 mm and a height of 12.6 m, at a gas velocity of 4–7 m/s and a solids circulation rate of 15–45 kg/m2·s. The solids holdup in the axial distribution is relatively high near the bottom of the riser, and gradually decreases as the riser height increases, with a stable value from the middle to the top of the riser. In the radial distribution, the solids holdup of desulfurization ash particles is low in the center and high in the wall region. Within the above operating conditions, the solids holdup ranges from 0.008 to 0.025. The particle-based Archimedes number has a linear relationship with the solids holdup at all operating conditions.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4738
Author(s):  
Sebastián Uribe ◽  
Binbin Qi ◽  
Omar Farid ◽  
Muthanna Al-Dahhan

With a Euler–Euler (E2P) approach, a mathematical model for predicting the pointwise hydrodynamic behavior of a spouted bed was implemented though computational fluid dynamics (CFD) techniques. The model considered a bed elasticity approach in order to reduce the number of required sub-models to provide closure for the solids stress strain-tensor. However, no modulus of elasticity sub-model for a bed elasticity approach has been developed for spouted beds, and thus, large deviations in the predictions are obtained with common sub-models reported in literature. To overcome such a limitation, a new modulus of elasticity based on a sensitivity analysis was developed and implemented on the E2P model. The model predictions were locally validated against experimental measurements obtained in previous studies. The experimental studies were conducted using our in-house developed advanced γ-ray computed tomography (CT) technique, which allows to obtain the cross-sectional time-averaged solids holdup distribution. When comparing the model predictions against the experimental measurements, a high predictive quality for the radial solids holdup distribution in the spout and annulus regions is observed. The model predicts most of the experimental measurements for different particle diameters, different static bed heights, and different inlet velocities with deviations under 15%, with average absolute relative errors (AARE) between 5.75% and 7.26%, and mean squared deviations (MSD) between 0.11% and 0.24%


Particuology ◽  
2020 ◽  
Author(s):  
Xin Su ◽  
Chengxiu Wang ◽  
Xingying Lan ◽  
Huajian Pei ◽  
Xiaoyang Mao ◽  
...  

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Ronald W. Breault ◽  
Steven L. Rowan ◽  
Justin M. Weber ◽  
Jingsi Yang

Abstract Tests were performed in a 0.1-m diameter small circulating fluidized bed (SCFB) and 0.3 m diameter cold flow circulating fluidized bed (CFCFB) riser systems located at the National Energy Technology Laboratory (NETL) to study the effects of riser diameter on the riser hydrodynamics. These tests were performed at solids circulation rates of Gs = 20 and 75 kg/m2 s and superficial gas velocities of Ug = 5.8 and 6.5 m/s using high-density polyethylene (HDPE) pellets with a density of 0.863 g/cm3, particle size range of 600–1400 µm (with a Sauter mean diameter of 871 µm, placing them in the Geldart B classification). Comparisons of riser axial pressure and solids fraction profiles, radial particle velocity profiles, and radial profiles of higher statistical moments and select chaos analysis parameters were considered. The results showed that for a given Ug and Gs, the smaller diameter riser exhibited characteristics associated with more dilute solids flow than that observed in the larger diameter riser. Additionally, the larger diameter riser exhibited a downward flow of solids near the wall under all test conditions, whereas the smaller diameter riser data exhibited little or no indications of solids downflow near the wall. These findings suggest that, from an industrial standpoint, a direct scaleup of small-scale tests cannot readily be accomplished as the solids holdup and the solids velocity profiles in small units (those normally tested in the laboratory) are not similar to those of large units and the performance of large units can therefore not be predicted from small-scale tests.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 161
Author(s):  
Yancong Liu ◽  
Yingya Wu ◽  
Xiaogang Shi ◽  
Chengxiu Wang ◽  
Jinsen Gao ◽  
...  

The difference of gas-solids flow between a circulating fluidized bed (CFB) downer and riser was compared by computational particle fluid dynamics (CPFD) approach. The comparison was conducted under the same operating conditions. Simulation results demonstrated that the downer showed much more uniform solids holdup and solids velocity distribution compared with the riser. The radial non-uniformity index of the solids holdup in the riser was over 10 times than that in the downer. In addition, small clusters tended to be present in the whole downer, large clusters tended to be present near the wall in riser. It was found that the different cluster behavior is important in determining the different flow behaviors of solids in the downer and riser. While the particle residence time increased evenly along the downward direction in the downer, particles with both shorter and longer residence time were predicted in the whole riser. The nearly vertical cumulative residence time distribution (RTD) curve in the downer further demonstrated that the solids back-mixing in the downer is limited while that in the riser is severe. Solids turbulence in the downer was much weaker compared with the riser, while the large clusters formation near the wall in the riser would hinder solids transportation ability.


Author(s):  
Wei Nie ◽  
Rongtao Feng ◽  
Junguo Li ◽  
Zhenhua Hao ◽  
Haijuan Zhan ◽  
...  

Abstract A comprehensive study of gas-solids flow behaviors was conducted in a novel multi-stage circulating fluidized bed (MCFB). Experiments were carried out in a cold model apparatus (a jetting fluidized bed, JFB, of 0.3 m diameter and 1.95 m tall, a riser of 0.15 m diameter and 12 m tall) at different elevated pressure, solids circulation rates and gas velocities. Geldart group B polystyrene particles of 400 μm in diameter and 1020 kg/m3 in density were used as bed materials. The characteristic of L-valve, axial and radial distributions of solids holdup were systematically tested at elevated pressures by pressure transducers with the frequency of 100 Hz and model PC6M of the optical fiber probes. Operating the L-valve at elevated pressure needs less cross-section average gas velocity compared to that at atmospheric pressure. Experimental results showed that under elevated pressure and high solids flow rate, the MCFB could more easily couple JFB with a riser, where the solids that entered could form three-level step-by-step supplement entrainment and multi-flow regimes formed. Besides, increasing operating pressure led to a higher the apparent solids holdup and local solids holdup. The local solids profiles behaved less uniform distribution at elevated pressure due to decreasing the gas velocity.


2019 ◽  
Vol 205 ◽  
pp. 259-268
Author(s):  
Wenhao Lian ◽  
Xueer Pan ◽  
Shuang Zheng ◽  
Wei Zhang ◽  
Hui Zhang ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 306 ◽  
Author(s):  
Min Wang ◽  
Yingya Wu ◽  
Xiaogang Shi ◽  
Xingying Lan ◽  
Chengxiu Wang ◽  
...  

With the development of computing power, the simulation of circulating fluidized bed (CFB) has developed from riser-simplified simulation to riser-only simulation, then to full-loop simulation. This paper compared these three methods based on pilot-scale CFB experiment data to find the scope of application of each method. All these simulations, using the Eulerian–Eulerian two-fluid model with the kinetic theory of granular theory, were conducted to simulate a pilot-scale CFB. The hydrodynamics, such as pressure balance, solids holdup distribution, solids velocity distribution, and instantaneous mass flow rates in the riser or CFB system, were investigated in different simulations. By comparing the results from different methods, it was found that riser-simplified simulation is not sufficient to obtain accurate hydrodynamics, especially in higher solids circulating rates. The riser-only simulation is able to make a reasonable prediction of time-averaged behaviors of gas–solids in most parts of riser but the entrance region. Further, the full-loop simulation can not only predict precise results, but also obtain comprehensive details and instantaneous information in the CFB system.


Sign in / Sign up

Export Citation Format

Share Document