Optimal PV Location Choice Considering Static and Dynamic Constraints

Author(s):  
M Mosbah ◽  
A Khattara ◽  
M Becherif ◽  
S. Arif

Abstract: A new photovoltaic (PV) farm is proposed to be integrated in GHARDAIA bus distribution network (Gh-17 bus), this paper studies the optimal location of this PV farm in the distribution network. The study is done in IEEE-14 bus then it is validated in Gh-17 bus network, the constraints considered for the choice of the optimal location are the stability margin, power loss and critical clearing time (CCT) in case of line fault. The simulation results are given using the PSAT.

Author(s):  
Muhammad Fathi Mohd Zulkefli ◽  
Ismail Musirin ◽  
Shahrizal Jelani ◽  
Mohd Helmi Mansor ◽  
Naeem M. S. Honnoon

<span>Distribution generation (DG) is a widely used term to describe additional supply to a power system network. Normally, DG is installed in distribution network because of its small capacity of power. Number of DGs connected to distribution system has been increasing rapidly as the world heading to increase their dependency on renewable energy sources. In order to handle this high penetration of DGs into distribution network, it is crucial to place the DGs at optimal location with optimal size of output. This paper presents the implementation of Embedded Adaptive Mutation Evolutionary Programming technique to find optimal location and sizing of DGs in distribution network with the objective of minimizing real power loss. 69-Bus distribution system is used as the test system for this implementation. From the presented case studies, it is found that the proposed embedded optimization technique successfully determined the optimal location and size of DG units to be installed in the distribution network so that the real power loss is reduced.</span>


2013 ◽  
Vol 347-350 ◽  
pp. 1435-1439
Author(s):  
Yan Mei Hu ◽  
Jun Yong Wu ◽  
Fang Li ◽  
Hong Jun Fu

Based on the planning data of Henan power grid in 2014, the impacts of 800kV UHVDC from Hami to Zhengzhou on static voltage stability of Henan power grid are analyzed in details. Firstly, this paper introduces the principle of voltage stability analysis, the stability margin index has been established. Secondly, the analysis of static voltage stability for Henan power grid before and after the UHVDC from Hami to Zhengzhou putting into operation is carried out, the weak buses and regions in Henan power grid are pointed out. Finally, the operation patterns of Henan power grid after the UHVDC putting into operation are classified and optimized. Simulation results show that the improper operation pattern may significantly deteriorate the static voltage stability of power grid. The operation patterns of HVDC power multi-channel transferring from Henan to Central China grid combined with partly internal consumption are favorable to improve the static voltage stability of the whole system. The analysis results provide theoretical basis for the future operation of Henan grid.


Author(s):  
Kanagasabai Lenin

This paper proposes Enhanced Frog Leaping Algorithm (EFLA) to solve the optimal reactive power problem. Frog leaping algorithm (FLA) replicates the procedure of frogs passing though the wetland and foraging deeds. Set of virtual frogs alienated into numerous groups known as “memeplexes”. Frog’s position’s turn out to be closer in every memeplex after few optimization runs and certainly, this crisis direct to premature convergence. In the proposed Enhanced Frog Leaping Algorithm (EFLA) the most excellent frog information is used to augment the local search in each memeplex and initiate to the exploration bound acceleration. To advance the speed of convergence two acceleration factors are introduced in the exploration plan formulation. Proposed Enhanced Frog Leaping Algorithm (EFLA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4911
Author(s):  
Qian Hao ◽  
Zhaoba Wang ◽  
Junzheng Wang ◽  
Guangrong Chen

Stability is a prerequisite for legged robots to execute tasks and traverse rough terrains. To guarantee the stability of quadruped locomotion and improve the terrain adaptability of quadruped robots, a stability-guaranteed and high terrain adaptability static gait for quadruped robots is addressed. Firstly, three chosen stability-guaranteed static gaits: intermittent gait 1&2 and coordinated gait are investigated. In addition, then the static gait: intermittent gait 1, which is with the biggest stability margin, is chosen to do a further research about quadruped robots walking on rough terrains. Secondly, a position/force based impedance control is employed to achieve a compliant behavior of quadruped robots on rough terrains. Thirdly, an exploratory gait planning method on uneven terrains with touch sensing and an attitude-position adjustment strategy with terrain estimation are proposed to improve the terrain adaptability of quadruped robots. Finally, the proposed methods are validated by simulations.


Author(s):  
Baina He ◽  
Yadi Xie ◽  
Jingru Zhang ◽  
Nirmal-Kumar C. Nair ◽  
Xingmin He ◽  
...  

Abstract In the transmission line, the series compensation device is often used to improve the transmission capacity. However, when the fixed series capacitor (FSC) is used in high compensation series compensation device, the stability margin cannot meet the requirements. Therefore, thyristor controlled series compensator (TCSC) is often installed in transmission lines to improve the transmission capacity of the line and the stability of the system. For cost considerations, the hybrid compensation mode of FSC and TCSC is often adopted. However, when a single-phase grounding fault occurs in a transmission line with increased series compensation degree, the unreasonable distribution of FSC and TCSC will lead to the excessive amplitude of secondary arc current, which is not conducive to rapid arc extinguishing. To solve this problem, this paper is based on 1000 kV Changzhi-Nanyang-Jingmen UHV series compensation transmission system, using PSCAD simulation program to established UHV series compensation simulation model, The variation law of secondary arc current and recovery voltage during operation in fine tuning mode after adding TCSC to UHV transmission line is analyzed, and the effect of increasing series compensation degree on secondary arc current and recovery voltage characteristics is studied. And analyze the secondary arc current and recovery voltage when using different FSC and TCSC series compensation degree schemes, and get the most reasonable series compensation configuration scheme. The results show that TCSC compensation is more beneficial to arc extinguishing under the same series compensation. Compared with several series compensation schemes, it is found that with the increase of the proportion of TCSC, the amplitude of secondary arc current and recovery voltage vary greatly. Considering various factors, the scheme that is more conducive to accelerating arc extinguishing is chosen.


2021 ◽  
Vol 13 (7) ◽  
pp. 3744
Author(s):  
Mingcheng Zhu ◽  
Shouqian Li ◽  
Xianglong Wei ◽  
Peng Wang

Fishbone-shaped dikes are always built on the soft soil submerged in the water, and the soft foundation settlement plays a key role in the stability of these dikes. In this paper, a novel and simple approach was proposed to predict the soft foundation settlement of fishbone dikes by using the extreme learning machine. The extreme learning machine is a single-hidden-layer feedforward network with high regression and classification prediction accuracy. The data-driven settlement prediction models were built based on a small training sample size with a fast learning speed. The simulation results showed that the proposed methods had good prediction performances by facilitating comparisons of the measured data and the predicted data. Furthermore, the final settlement of the dike was predicted by using the models, and the stability of the soft foundation of the fishbone-shaped dikes was assessed based on the simulation results of the proposed model. The findings in this paper suggested that the extreme learning machine method could be an effective tool for the soft foundation settlement prediction and assessment of the fishbone-shaped dikes.


Sign in / Sign up

Export Citation Format

Share Document