Grid integration of hybrid renewable energy source using Aligned Multilevel Inverter

Author(s):  
Motaparthi Nagaraju ◽  
Kiran Kumar Malligunta

Abstract Grid connected hybrid renewable energy sources (RES) are main challenges nowadays. Interconnecting of two or more RES is called hybrid system and battery is optional in this kind of systems where grid is in active. The normal inverters are unable to produce sinusoidal voltages and this will cause many problems in grid connected system. Hence, many topologies of multilevel inverters are proposed which can able to produce sinusoidal output voltage. However, the cost and operational complexity will increase due to increasing number of switches. In order to reduce total number of switches, an Aligned Multilevel Inverter (AMI) configuration of three phase is implemented in this paper. Wind energy-based electrical power generation system and solar energy based electrical power generation systems are considered for interconnection. Energy storage devices such as batteries are not incorporated to system since considered grid is in active mode. Maximum power point tracker (MPPT) devices are available to extract maximum power from photovoltaic arrays and wind turbines, hence a boost converter is considered as MPPT converter for wind turbine and proposed AMI also works as MPPT converter for PV by using proposed controller. Hence extra DC–DC converters are not essential for PV system for MPPT, resulting in reduction of overall system cost. Also, the modified invasive weed optimization (MIWO) based algorithm is proposed for PV system to harvest maximum energy under partial shading conditions. The proposed MIWO is compared with particle swarm optimization (PSO) and grey wolf optimization (GWO) to enhance the performance of proposed algorithm. Extensive results are validated with Hardware-in-Loop (HIL) designed on OPAL-RT platform.

Author(s):  
Yas A. Alsultanny ◽  
Eiman Alharbi

The renewable energy sources were considered as a potentially promising and far less harmful alternative to traditional methods of electrical production. The main aim of this paper is to evaluate the seasonal weather influence on the electrical power generation from solar cells. Experimental and quantitative methodologies were used to analysis the data were collected from two sources the primary data were collected from PhotoVoltaic (PV) system of capacity 1200W for one year. The second source of data were collected from the Kuwait Directorate General of Civil Aviation. The key findings of the results showed that the daily sunlight hours are considered an important factor for electrical power generation; the temperature had reverse impact when it raised to more than 30oC, and the relative humidity had reverse impact when it raised to more than 49%. The CO2 avoided by this system was 1.325tonnes per year. The recommendation of this study is to depend on PV cells to reduce dependence on fossil fuels.


Author(s):  
S. Nagaraja Rao ◽  
D. V. Ashok Kumar ◽  
Ch. Sai Babu

<table width="0" border="1" cellspacing="0" cellpadding="0"><tbody><tr><td valign="top" width="593"><p>The conventional energy sources available to us are on the verge of depletion. This depletion of conventional energy source leads to concentrate more on alternative energy sources. In this research, the focus is on the role of renewable energy sources (RES) in electrical power generation. Even though, the RES based plants produce power, we cannot directly connect it to the grid or loads. Because, the voltage ratings and nature supply of RES plants would not match with the load. Hence, this is a major issue for connecting RES plants to load or other utility. The power electronic converters are extensively being used as a link between load and supply. As most of the renewable energy power generation is DC in nature, the DC-DC converter is used to increase the voltage level and this DC must be converted to AC for grid connection. Therefore, inverters are used for DC to AC conversion. In this paper, the DC supply of renewable energy is connected to load by using cascade DC-DC converters along with a proposed reversing voltage (RV) multilevel inverter (MLI). The first DC-DC converter is used to enhance the voltage level with high gain and second converter is used to split the DC supply for inverter convenience. In this paper, proposed RV symmetrical and asymmetrical MLI generates 7, 9, 11, 13 and 15 levels with only ten power switches. In-phase level-shifted triangular carrier type sine pulse width modulation (PWM) technique is employed to trigger the commutating switches of proposed RV MLI. Switches of H-Bridge for reverse voltage appearance across the load are triggered by simple pulse generator. The circuits are modeled and simulated in MATLAB/SIMULINK software. Results are presented and discussed.</p></td></tr></tbody></table>


Author(s):  
S. Chatterton ◽  
P. Pennacchi ◽  
A. Vania ◽  
R. Ricci ◽  
A. Ghisoni

At present, the attention of the market in Stirling engines is increasing for small size applications of electrical power generation. These engines are based on a simple principle of functioning and could employ renewable energy sources. Two main configurations are available on the market: the first is a four-cylinder engine with wobble yoke mechanism and the second is represented by the single-cylinder free-piston concept. The paper is aimed at investigating several multi-cylinder configurations for the improvement of the engine performances. These are evaluated by means of numerical simulations taking into account the dynamics of the mechanism and the thermal aspects of the cycle. In particular the attention of the authors is focused on the design of a new configuration with a higher number of cylinders.


Author(s):  
Adeoye Samuel ◽  
◽  
Oladimeji TT ◽  

The goal of power sector in Nigeria is to efficiently and reliably transmit electrical power to all parts of the country which are made up of thirty-six states of the federation and the federal capital territory. The constituents of electrical power system are the generation, transmission, distribution and the utilization of electrical energy. There is gross power imbalance between the generation and the required power demand which has culminated into a defective economy in the last three decades. This paper therefore examines the power imbalance between the generation and power demand by the consumers and therefore stresses the need to harness the opportunity of renewable energy generation close to the gap between the power generation and power demand. This will help in transmitting and distributing efficient, effective, reliable power to consumers and improve both human and capital development. The availability of renewable energy sources such as sun, wind and small hydro power will be explored for the future of power generation in the country to fill in the gap between power generation and demand in Nigeria


2020 ◽  
Vol 12 (6) ◽  
pp. 2178 ◽  
Author(s):  
Omar Farrok ◽  
Koushik Ahmed ◽  
Abdirazak Dahir Tahlil ◽  
Mohamud Mohamed Farah ◽  
Mahbubur Rahman Kiran ◽  
...  

Recently, electrical power generation from oceanic waves is becoming very popular, as it is prospective, predictable, and highly available compared to other conventional renewable energy resources. In this paper, various types of nearshore, onshore, and offshore wave energy devices, including their construction and working principle, are explained explicitly. They include point absorber, overtopping devices, oscillating water column, attenuators, oscillating wave surge converters, submerged pressure differential, rotating mass, and bulge wave converter devices. The encounters and obstacles of electrical power generation from the oceanic wave are discussed in detail. The electrical power generation methods of the generators involved in wave energy devices are depicted. In addition, the vital control technologies in wave energy converters and devices are described for different cases. At present, piezoelectric materials are also being implemented in the design of wave energy converters as they convert mechanical motion directly into electrical power. For this reason, various models of piezoelectric material-based wave energy devices are illustrated. The statistical reports and extensive literature survey presented in this review show that there is huge potential for oceanic wave energy. Therefore, it is a highly prospective branch of renewable energy, which would play a significant role in the near future.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Steven Chatterton ◽  
Paolo Pennacchi

Stirling engines are machines based on a simple working principle and are well known for their theoretical high thermal efficiency. Technical drawbacks related to the high temperatures required for achieving high values of thermal efficiency and output power have limited their spread to low-power applications. Stirling engines can operate with almost any source of heat. For this reason, these engines are currently installed in applications with renewable energy sources for combined heat and power generation (CHP), where the mechanical output power is usually converted into electrical power. The paper is focused on the design and analysis of a novel mechanical configuration with a higher number of cylinders than current commercial solutions. The performances of several multicylinder configurations are evaluated via numerical simulations, taking into account the dynamics of the mechanism and the thermal aspects of the cycle. Finally, a prototype of the main mechanism, which allows the number of cylinders to be increased, is introduced and briefly described.


2021 ◽  
Author(s):  
Sahishnukumar Shah

The small-scale vertical axis wind turbine is designed and modeled in this project, considering all aspects of wind turbine such as Blade design, stator design, rotor design and converter system design. Electric Power has become a prime necessity for any country for economic development. The conventional fuel sources for power generation are depleting fast. The favorable alternatives are renewable energy sources. Although more invention has to be carried out in the field of renewable energy sources, every little effort in this direction may provide a solution to reach most economical power generation point. Hence the same topic was selected for Masters Project. The goal of this project is to design a small scale Vertical Axis Wind Turbine, which is capable of producing electrical power even with low wind velocity. It can be placed on road dividers, sidetracks of train or remote places i.e. villages, military camps, where it is not economical to transmit power from power plants. Implementation of such project would reduce the dependence of an industry or remote houses, on electricity board.


Sign in / Sign up

Export Citation Format

Share Document