Hybrid Synchronization Between 5-th Order Hyperchaotic Chua Systems

2015 ◽  
Vol 13 (1-2) ◽  
pp. 25-34
Author(s):  
Dragomir Chantov

Abstract The aim of this paper is the design of a chaotic synchronization system with a special type of synchronization, called hybrid synchronization, on the basis of Chua’s fifth-order hyperchaotic model. When two chaotic systems are in hybrid synchronization, some of the systems’ variables pairs are in identical synchronization, and the rest are anti-synchronized. Hybrid synchronization schemes have advantages regarding the degree of signal protection, when they are used to build a chaotic secure communication system. The design of the system is accomplished by means of active control, where the Second Lyapunov method is used to prove the stability of the synchronization system.

2021 ◽  
Author(s):  
Ali Durdu ◽  
Yılmaz Uyaroğlu

Abstract Many studies have been introduced in the literature showing that two identical chaotic systems can be synchronized with different initial conditions. Secure data communication applications have also been made using synchronization methods. In the study, synchronization times of two popular synchronization methods are compared, which is an important issue for communication. Among the synchronization methods, active control, integer, and fractional-order Pecaro Carroll (P-C) method was used to synchronize the Burke-Shaw chaotic attractor. The experimental results showed that the P-C method with optimum fractional-order is synchronized in 2.35 times shorter time than the active control method. This shows that the P-C method using fractional-order creates less delay in synchronization and is more convenient to use in secure communication applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yeong-Jeu Sun

The concept of practical synchronization is introduced and the chaos synchronization of master-slave chaotic systems with uncertain input nonlinearities is investigated. Based on the differential and integral inequalities (DII) approach, a simple linear control is proposed to realize practical synchronization for master-slave chaotic systems with uncertain input nonlinearities. Besides, the guaranteed exponential convergence rate can be prespecified. Applications of proposed master-slave chaotic synchronization technique to secure communication as well as several numerical simulations are given to demonstrate the feasibility and effectiveness of the obtained result.


2011 ◽  
Vol 480-481 ◽  
pp. 1378-1382
Author(s):  
Yan Hui Chen

The control of chaotic synchronization is the kernel technology in chaos-based secure communication. Those control methods have to transmitting control signal which increase the security risks of the communication system. Attacker can reconstruct the chaotic system or estimate parameters by using the information of the chaotic system. In this paper we propose a hybrid Liu chaotic synchronization control scheme which contains both continuous chaotic system with oscillating parameters approach to 0 and discrete chaotic system. By theory of impulsive differential equations, we proved a theorem that two continuous Liu chaotic systems can get synchronized without control signal transmitting which has reduced the risk of the security.


2014 ◽  
Vol 47 (1) ◽  
pp. 292-296 ◽  
Author(s):  
Jay Prakash Singh ◽  
Piyush Pratap Singh ◽  
B.K. Roy

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Bo Wang ◽  
Xiucheng Dong

This paper studies the problem on chaotic secure communication, and a new hyperchaotic system is included for the scheme design. Based on Lyapunov method andH∞techniques, two kinds of chaotic secure communication schemes in the case that system disturbances exist are presented for the possible application in real engineering; corresponding theoretical derivations are also provided. In the end, some typical numerical simulations are carried out to demonstrate the effectiveness of the proposed schemes.


1996 ◽  
Vol 06 (12b) ◽  
pp. 2653-2660 ◽  
Author(s):  
TAO YANG ◽  
LEON O. CHUA

The generalized synchronization (GS) of two identical chaotic systems through an unknown channel is studied. First, some theoretical results of GS through an unknown channel are derived. Finally, an application of GS to channel-independent chaotic secure communication is presented.


2016 ◽  
Vol 40 (4) ◽  
pp. 1177-1187 ◽  
Author(s):  
Hua Wang ◽  
Jian-Min Ye ◽  
Zhong–Hua Miao ◽  
Edmond A Jonckheere

This paper presents finite-time chaos synchronization of time-delay chaotic systems with uncertain parameters. According to the proposed method, a lot of coupled items can be treated as zero items. Thus, the whole system can be simplified greatly. Based on robust chaotic synchronization, secure communication can be realized with a wide range of parameter disturbance and time-delay. Numerical simulations are provided to illustrate the effectiveness of the proposed method.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Sachin Bhalekar ◽  
Varsha Daftardar-Gejji

Antisynchronization phenomena are studied in nonidentical fractional-order differential systems. The characteristic feature of antisynchronization is that the sum of relevant state-variables vanishes for sufficiently large value of time variable. Active control method is used first time in the literature to achieve antisynchronization between fractional-order Lorenz and Financial systems, Financial and Chen systems, and Lü and Financial systems. The stability analysis is carried out using classical results. We also provide numerical results to verify the effectiveness of the proposed theory.


2011 ◽  
Vol 25 (09) ◽  
pp. 1283-1292 ◽  
Author(s):  
MING-JUN WANG ◽  
XING-YUAN WANG

In the paper, generalized chaotic synchronization of a class of fractional order systems is studied. Based on the stability theory of linear fractional order systems, a generalized synchronization scheme is presented, and theoretical analysis is provided to verify its feasibility. The proposed method can realize generalized synchronization not only of fractional order systems with same dimension, but also of systems with different dimensions. Besides, the function relation of generalized synchronization can be linear or nonlinear. Numerical simulations show the effectiveness of the scheme.


Sign in / Sign up

Export Citation Format

Share Document