scholarly journals Energy Demands Of The Existing Collective Buildings With Bearing Structure Of Large Precast Concrete Panels From Timisoara

2015 ◽  
Vol 5 (1) ◽  
pp. 75-82
Author(s):  
S. Pescari ◽  
V. Stoian ◽  
D. Tudor ◽  
Carmen Măduţa

Abstract One of the targets of EU Directives on the energy performance of buildings is to reduce the energy consumption of the existing buildings by finding efficient solutions for thermal rehabilitation. In order to find the adequate solutions, the first step is to establish the current state of the buildings and to determine their actual energy consumption. The current paper aims to present the energy demands of the existing buildings with bearing structure of large precast concrete panels in the city of Timisoara. Timisoara is one of the most important cities in the west side of Romania, being on the third place in terms of size and economic development. The Census of Population and Housing of 2011 states that Timisoara has about 127841 private dwellings and 60 percent of them are collective buildings. Energy demand values of the existing buildings with bearing structure of large precast concrete panels in Timisoara, in their current condition, are higher than the accepted values provided in the Romanian normative, C107. The difference between these two values can reach up to 300 percent.

2018 ◽  
Vol 174 ◽  
pp. 01018
Author(s):  
Piotr Lis ◽  
Anna Lis

The calculative methods, which are adopted in various fields of engineering, are usually a certain kind of theoretical approximation of reality. The deviations from a full consistency of actual conditions and theoretical assumptions occur also in case of building heating. This work presents the selected results of examinations connected with an annual energy consumption CH and annual final energy demand Qk,H for heating and conducted on the group of educational buildings. The presented analysis and its results regard the group including 46 of 50 educational buildings, which form a municipal group of the buildings of this type. The purpose of presented analysis was to examine the influence of possible occurrence and level of differences between the annual energy consumption CH and annual final energy demand Qk,H for heating of examined buildings. The realization of this purpose is the basis for further research and analysis aimed at determining the dominant reasons of mentioned differences, establishing their level and propose a calculative method for reducing the differences between the values "picturing" the thermal needs of educational buildings in actual (energy consumption CH) and theoretical (final energy demand Qk,H) conditions.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3311
Author(s):  
Víctor Pérez-Andreu ◽  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Javier Cárcel-Carrasco

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 950 ◽  
Author(s):  
Hye Gi Kim ◽  
Sun Sook Kim

In an effort to improve the energy efficiency of existing buildings, it is necessary to first evaluate the energy performance of those buildings. Since it is difficult to obtain detailed information on existing buildings, the challenge is how to conduct reliable energy performance assessments with this limited information. As a result, many countries have adopted evaluation systems based on measured energy consumption data for existing buildings. This study aims to analyze the building energy consumption and characteristics using Korea’s national building database and provide an energy performance benchmark for continuous management of the energy performance of existing buildings. We analyzed the relationship between the basic statistical characteristics of the information collected from the national integrated energy database and energy consumption. The total floor area was found to be closely related to energy consumption, and various regression analysis methods were applied and compared to develop a benchmark to explain the trends of energy consumption according to the increase in total floor area. Finally, the developed benchmarks were used to evaluate energy consumption and examine the feasibility of the benchmarks.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1309 ◽  
Author(s):  
Tomasz Szul ◽  
Stanisław Kokoszka

In many regions, the heat used for space heating is a basic item in the energy balance of a building and significantly affects its operating costs. The accuracy of the assessment of heat consumption in an existing building and the determination of the main components of heat loss depends to a large extent on whether the energy efficiency improvement targets set in the thermal upgrading project are achieved. A frequent problem in the case of energy calculations is the lack of complete architectural and construction documentation of the analyzed objects. Therefore, there is a need to search for methods that will be suitable for a quick technical analysis of measures taken to improve energy efficiency in existing buildings. These methods should have satisfactory results in predicting energy consumption where the input is limited, inaccurate, or uncertain. Therefore, the aim of this work was to test the usefulness of a model based on Rough Set Theory (RST) for estimating the thermal energy consumption of buildings undergoing an energy renovation. The research was carried out on a group of 109 thermally improved residential buildings, for which energy performance was based on actual energy consumption before and after thermal modernization. Specific sets of important variables characterizing the examined buildings were distinguished. The groups of variables were used to estimate energy consumption in such a way as to obtain a compromise between the effort of obtaining them and the quality of the forecast. This has allowed the construction of a prediction model that allows the use of a fast, relatively simple procedure to estimate the final energy demand rate for heating buildings.


2020 ◽  
Vol 224 ◽  
pp. 110235 ◽  
Author(s):  
Stefano Cozza ◽  
Jonathan Chambers ◽  
Chirag Deb ◽  
Jean-Louis Scartezzini ◽  
Arno Schlüter ◽  
...  

2014 ◽  
Vol 1073-1076 ◽  
pp. 2457-2461
Author(s):  
Chang Sheng Li ◽  
Qing Ling Li ◽  
Zhong Min Lei ◽  
Han Yang ◽  
Hui Qing Qu

These paper investigated the relationship between economics development and energy demands based on Energy Kuznets Curve (EFC) in China. The results show that, the prospects of economics and energy demand in China in further will undergo three important stages to 2050.The peak of energy demand maybe around 2035 and the corresponding total energy demand maybe amount 5.7 billion tce. In 2035, the GDP per capital maybe about 17000 (2005 US$) and the urbanization will reach a relative high level. It is urgent for China to take actions to curb the increasing total energy consumption.


2020 ◽  
Vol 25 (2) ◽  
pp. 261-268
Author(s):  
Guillermo Valencia ◽  
Katherin Nahomy Rodriguez ◽  
Gloria Raquel Torregroza Matos ◽  
Carlos Acevedo ◽  
Jorge Duarte Forero

Given the growth in energy demand, the limited energy resources, and the high environmental impact of energy generation from fossil fuels, it is vital to find methods to obtain save energy costs in different sectors, such as residential, industrial, transportation sector, and domestic. This paper presents a methodology that allows the implementation of an energy management system following the guidelines of the ISO 50001 standard. A gap analysis was performed to determine the position of the organization with respect to the requirements of the standard, and the next step was the inspection of the plant to find opportunities for improvement that would lead to energy optimization. From the results, six equipment was the cause of the 82% of the energy consumption in the production process, and some recommendation was proposed with the aim to optimize energy consumption. A methodology is proposed for the standard implementation, which can be implemented by different organizations from different fields to achieve savings in energy costs in the plant. Some relevant actions to improve the energy performance of the plant were proposed, such as the optimization of the compressed air system, the reduction of potential numbers of leakage, and the reduction of the working pressure of the system.


2018 ◽  
Vol 7 (4) ◽  
pp. 124
Author(s):  
Kawar T. Salih

The power shortage is one of the major problems in developing countries. Kurdistan Region of Iraq suffers from this issue, like other developing countries. Especially, after the economy crises that has started in 2014. However, all its efforts for tackling this challenge has been in providing more energy supply stations and more fuel provision. Few studies have been found in the region that seek the relation between the quality of buildings and energy consumption. It is questioned if the building sector in Kurdistan is well managed and environmentally sufficient to consume minimum amount of energy since it is the largest energy consuming sector. This research will seek an alternative to decrease the energy demand in buildings instead of expanding the energy sector. This could be achieved by evaluating the quality of building sector environmentally and improving it. Providing guidelines for building’s thermal regulations, passive building design and increasing the energy efficiency of buildings by renewal means could be alternative strategies for lowering the energy consumption. Theoretical and numerical research approach have been taken in to account for finding the answer through a case study and comparative analysis. A variation of 21-29% of power consumption can be observed between buildings that have not considered energy efficiency criteria in their design and those who reflected them more in the design.


2021 ◽  
Author(s):  
Moe Otsubo

The energy performance gap between the predicted and actual energy consumption of 3 LEED for Homes certified buildings were investigated. The actual energy consumptions of the homes were found to be 23 to 77% higher than the initial energy consumption predictions made during the design stage. Revisions to the HOT2000 models to account for changes made between the design and occupancy phase of the buildings helped reduce the gap (9 to 40%). The sources of the discrepancies were found to be related to the energy modeling program’s limitations, inconsistency between the energy model and the actual building, and additional loads in the homes. The HOT2000 program, which is used for obtaining the EnerGuide rating for LEED certified homes, was compared against a dynamic energy simulation program to assess the applicability of the use of the former for energy efficient homes. The use of EnergyPlus not only allowed for a more accurate representation of the actual homes in the energy models, but an increase in the EnerGuide rating for the home was seen, which in turn equates to additional points for the home under the “Energy & Atmosphere” category for the LEED for Homes certification process


2021 ◽  
Author(s):  
M.R. Amjath ◽  
◽  
H. Chandanie ◽  
S.D.I.A. Amarasinghe ◽  
◽  
...  

It has been observed that inefficient buildings consume three to five times more energy than efficient buildings. Subsequently, improving the Energy Efficiency (EE) of existing buildings, which account for a significant portion of the energy consumption of the building sector, has become a top priority. Also, Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems typically account for three-quarters of a building's energy consumption. Hence, focus on the energy efficiency improvements associated with these subsystems is entailed to optimise the energy use of buildings in comparison to other energy consumers. Energy Retrofit (ER) is defined as the main approach in improving the energy efficiency of buildings to achieve energy reduction goals. Nevertheless, there is a general lack of awareness regarding ER. Thus, the purpose of this article is to bridge this research gap by critically reviewing the applicable literature on ER. The paper first analysed the role of retrofits in buildings concerning optimising energy performance. The paper also discusses the implementation process of ER, which includes five steps viz. pre-retrofit survey, energy auditing, and performance assessment, identification of suitable and feasible retrofit options, site implementation and commissioning, and validation and verification. Further, different types of ER applicable to HVAC and lighting systems are discussed. In their endeavor to enhance the EE of existing buildings, practitioners could apply the findings of this study, as a basis to understand the available ER types and as a measure to gauge the efficiency of existing buildings, which will facilitate effective decision-making.


Sign in / Sign up

Export Citation Format

Share Document