scholarly journals Finding Alternative Methods for Controlling the Power Shortage in Kurdistan through Improving Buildings’ Energy Performance

2018 ◽  
Vol 7 (4) ◽  
pp. 124
Author(s):  
Kawar T. Salih

The power shortage is one of the major problems in developing countries. Kurdistan Region of Iraq suffers from this issue, like other developing countries. Especially, after the economy crises that has started in 2014. However, all its efforts for tackling this challenge has been in providing more energy supply stations and more fuel provision. Few studies have been found in the region that seek the relation between the quality of buildings and energy consumption. It is questioned if the building sector in Kurdistan is well managed and environmentally sufficient to consume minimum amount of energy since it is the largest energy consuming sector. This research will seek an alternative to decrease the energy demand in buildings instead of expanding the energy sector. This could be achieved by evaluating the quality of building sector environmentally and improving it. Providing guidelines for building’s thermal regulations, passive building design and increasing the energy efficiency of buildings by renewal means could be alternative strategies for lowering the energy consumption. Theoretical and numerical research approach have been taken in to account for finding the answer through a case study and comparative analysis. A variation of 21-29% of power consumption can be observed between buildings that have not considered energy efficiency criteria in their design and those who reflected them more in the design.

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1309 ◽  
Author(s):  
Tomasz Szul ◽  
Stanisław Kokoszka

In many regions, the heat used for space heating is a basic item in the energy balance of a building and significantly affects its operating costs. The accuracy of the assessment of heat consumption in an existing building and the determination of the main components of heat loss depends to a large extent on whether the energy efficiency improvement targets set in the thermal upgrading project are achieved. A frequent problem in the case of energy calculations is the lack of complete architectural and construction documentation of the analyzed objects. Therefore, there is a need to search for methods that will be suitable for a quick technical analysis of measures taken to improve energy efficiency in existing buildings. These methods should have satisfactory results in predicting energy consumption where the input is limited, inaccurate, or uncertain. Therefore, the aim of this work was to test the usefulness of a model based on Rough Set Theory (RST) for estimating the thermal energy consumption of buildings undergoing an energy renovation. The research was carried out on a group of 109 thermally improved residential buildings, for which energy performance was based on actual energy consumption before and after thermal modernization. Specific sets of important variables characterizing the examined buildings were distinguished. The groups of variables were used to estimate energy consumption in such a way as to obtain a compromise between the effort of obtaining them and the quality of the forecast. This has allowed the construction of a prediction model that allows the use of a fast, relatively simple procedure to estimate the final energy demand rate for heating buildings.


The energy consumption of hospital buildings, have increased due to embedment of sophisticated equipment pertaining to advent of technology. Factors affecting energy consumptions are air quality monitoring, high maintenance of sophisticated machineries, accurate sanitization of premises, high load of patients to doctor ratio in India which is 1596:1 as compared to regulation of 1000:1 prescribed by World Health Organization (WHO). Confederation of Indian Industry (CII) reported that nearly 60% of health care services and hospitals do not meet the minimum of Energy Performance Index (EPI) criteria. Energy Conservation Building Code (ECBC) of India shows that hospitals in India have a potential to achieve 42% energy saving by implementing energy efficient measures. Hence, there is a dire need to assess the parameters contributing to heavy energy consumption and the conservative and preventive measures need to be addressed. Literature indicates incorporation of efficient domestic water heating techniques, boilers, usage of renewable energies, thermal insulation improvement, optimal building design, improvement of air conditioning and heating systems, optimizing electric energy installations etc as possible techniques for achieving energy efficiency. A compile of best practices proposed from literature as compared to the regulations made by ECBC, CII, MEDA, and GBC (Green building council) is made in this paper. HVAC being the highest contributing system for energy consumption, IoT based working models are prepared and proposed for application; suitability of adoption of the system is discussed.


Author(s):  
Gerhard Dell ◽  
Christiane Egger

The buildings sector accounts for 40% of European energy requirements. Two thirds of the energy used in European buildings is consumed by private households, and their consumption is growing every year as rising living standards lead to an increased use of air conditioning and heating systems. Research shows that more than one-fifth of the present energy consumption and up to 30–45 million tonnes of CO2 per year could be saved by 2010 by applying more ambitious standards both to new and refurbished buildings–these savings would represent a considerable contribution to meeting the European Kyoto targets (European Council, 2002). Without comprehensive measures, energy consumption and CO2 emissions from the building sector will continue to grow. Sustainable energy strategies for buildings will therefore increase in importance. Even today, so-called ‘zero emission buildings’ can be realized with existing planning approaches and technologies. Such buildings do not need an external energy input (for example from oil, gas or supplied electricity) other than solar energy. This is achieved by a combination of a high-level of energy efficiency and renewable energy technologies. This chapter focuses on buildings in the housing and service sectors, presents new building design strategies, technologies, and building components as well as the new legal framework set by the European Buildings Directive. It also discusses the question of raising awareness, and presents some thoughts on how changing life patterns may impact the buildings of the future. Residential buildings mainly need energy for space heating; with present building standards, space heating represents about 70% of the overall energy demand of existing buildings. In many European countries there are substantial efforts to increase energy efficiency—nevertheless, not all the potential for energy savings has been realized by far, and oil is still a major energy source for heating. In recent years, heat demand for new buildings was reduced significantly by technical measures. However, the number of low energy or passive buildings in Europe is still very limited, despite the fact that they can be constructed at acceptable costs.


2014 ◽  
Vol 70 (7) ◽  
Author(s):  
Ali Keyvanfar ◽  
Arezou Shafaghat ◽  
Mohd Zaimi Abd Majid ◽  
Hasanuddin Lamit ◽  
Kherun Nita Ali

Sustainable Building Assessment Tools have not yet measured the association between user satisfaction with adaptive behavior and energy efficiency. The current research aims to rectify this problem by testing the hypothesis that user satisfaction with adaptive behavior affects building energy consumption. To test the hypothesis, the staff’s overall satisfaction with adaptive behavior in response to tenant energy-efficiency features was used as the independent variable, while office unit energy consumption was used as the dependent variable. A set of conceptual variables and measured variables were identified for both the dependent and independent variables. A total of nine possible combinations of measured variables were investigated through a survey fielded in ten office units. The survey analysis determined that the building users are not satisfied with the tenant energy efficiency features and that they may adapt the indoor environment cooling and lighting qualities. An expert input study was conducted to validate the results with respect to the hypothesis. Seven experts who had experience in building assessments were invited to participate in the input study. Grounded group decision making analysis method confirmed the hypothesis testing results. The research results indicated that user adaptive behaviors directly affect building energy performance. Sustainable Building Assessment Tool developers along with energy efficient building design consultants and contractors could make use of these research findings.


2019 ◽  
Vol 111 ◽  
pp. 03052 ◽  
Author(s):  
Mohammed Khalaf ◽  
Touraj Ashrafian ◽  
Cem Demirci

The energy conversations methods and techniques take a significant role in the energy performance of the buildings. Façade and shading systems are in continuous development, and recent studies are showing the importance of implementation of such systems to reduce energy consumption and enhance the effectiveness of the building performance. School buildings are mostly being used during daytime, hence, require active use of sunlight. A measure that is taken on a school building envelope can prevent overheating and overcooling and reduce the heating and cooling energy consumption but at the same time can increase the lighting energy consumption vice versa. Thus, it is necessary to optimise the energy required for climatisation of a building with lighting energy demand. The main aim of the paper is to provide analysis for façade and shading systems applied to a school building and study the effectiveness of it on energy consumption and conservation. The case study for this paper is a typical building project designed to be located in Istanbul, Turkey and has a traditional façade system which is clear double layer windows without any shading devices. The analyses of the energy efficiency of these systems will be presented. The different glazing types and shading systems alternatives will show the most efficient one to be used as some optimised alternatives for the systems. Findings indicate that proper glazing and shading systems can reduce the needed energy for heating and lightening and thus total energy consumption of a school building significantly.


2019 ◽  
Vol 887 ◽  
pp. 335-343
Author(s):  
Nazanin Moazzen ◽  
Mustafa Erkan Karaguler ◽  
Touraj Ashrafian

Energy efficiency has become a crucial part of human life, which has an adverse impact on the social and economic development of any country. In Turkey, it is a critical issue especially in the construction sector due to increase in the dependency on the fuel demands. The energy consumption, which is used during the life cycle of a building, is a huge amount affected by the energy demand for material and building construction, HVAC and lighting systems, maintenance, equipment, and demolition. In general, the Life Cycle Energy (LCE) needs of the building can be summarised as the operational and embodied energy together with the energy use for demolition and recycling processes.Besides, schools alone are responsible for about 15% of the total energy consumption of the commercial building sector. To reduce the energy use and CO2 emission, the operational and embodied energy of the buildings must be minimised. Overall, it seems that choosing proper architectural measures for the envelope and using low emitting material can be a logical step for reducing operational and embodied energy consumptions.This paper is concentrated on the operating and embodied energy consumptions resulting from the application of different architectural measures through the building envelope. It proposes an educational building with low CO2 emission and proper energy performance in Turkey. To illustrate the method of the approach, this contribution illustrates a case study, which was performed on a representative schoold building in Istanbul, Turkey. Energy used for HVAC and lighting in the operating phase and the energy used for the manufacture of the materials are the most significant parts of embodied energy in the LCE analyses. This case study building’s primary energy consumption was calculated with the help of dynamic simulation tools, EnergyPlus and DesignBuilder. Then, different architectural energy efficiency measures were applied to the envelope of the case study building. Then, the influence of proposed actions on LCE consumption and Life Cycle CO2 (LCCO2) emissions were assessed according to the Life Cycle Assessment (LCA) method.


2019 ◽  
Vol 8 (5) ◽  
pp. 366-390 ◽  
Author(s):  
Phan Anh Nguyen ◽  
Regina Bokel ◽  
Andy van den Dobbelsteen

Purpose Refurbishing houses is considered a key measure to improve the energy efficiency of the built environment. However, little is known about the implementation and outcome of housing renovation for energy upgrades in the Vietnamese practice. The purpose of this paper is to investigate the energy performance of the current housing stock in Vietnam and the potential to reduce energy use in households. Design/methodology/approach The paper is based on a survey with 153 respondents in three major climatic regions of Vietnam. The survey focusses on building characteristics, environmental performance, energy performance and refurbishment activities. Data collected from the survey were statistically analysed to give insight into the current performance of the housing stock and its energy saving potential. Findings This paper concludes that building design and construction, particularly the building envelope, have a significant influence on the occupants’ comfort. However, the energy consumption in houses is not statistically associated with building design and indoor environment. It is suggested that financial status and occupants’ behaviour currently have a strong influence on the household energy use. The survey also showed that refurbishment improves the housing performance, especially if improving the indoor environment was one of the drivers. Originality/value There are very few studies on energy use in households in Vietnam, especially with regards to actual energy consumption. This paper brings insights into the actual energy consumption and reveals the “performance gap” in Vietnamese housing stock.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 394
Author(s):  
Lillian Sve Rokseth ◽  
Bendik Manum

For decades, energy efficiency has been a key issue in the Norwegian building sector, and energy standards are strict in order to reduce net delivered energy to buildings. Formally, requirements on energy use of dwellings are set by kWh per m2 heated GIA per year, a unit not accounting for dwelling size or number of persons in the households. This study, examining spaciousness of living in relation to dwelling types on an urban scale, shows that dwelling area per resident differs a lot across location and dwelling types. This implies that buildings formally performing the same in terms of following the legislation equally, in reality, may have a very different energy demand per person. When comparing dwelling types, energy demand per floor area and floor area per person is considerably higher for detached dwellings than for apartments. For both dwelling types, the energy demand of the dwellings in use is higher than what is stated in the requirements, and this difference is highest for detached houses. The current practice of measuring energy demand only per floor area is therefore insufficient. To realistically model energy performance of dwellings, measures accounting for dwelling size and number of residents should be included.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3006 ◽  
Author(s):  
Hwang ◽  
Cho ◽  
Moon

Growths in population, increasing demand for health care services and comfort levels, together with patients on the rise in time spent inside hospitals, assure the upward trend that energy demand will continue in the future. Since the hospital buildings operate 24 hours, 365 days a year for the treatment and restoration of patients, they are approximately 2–3 times more energy-intensive than normal buildings. For this reason, energy efficiency in hospitals is one of the prime objectives for energy policy at regional, national and international levels. This study aims to find how meaningful energy performance, reflecting good energy management and energy conservation measures (ECMs), can be operated for hospital buildings, a category encompassing complex buildings with different systems and large gaps between them. Energy audit allows us to obtain knowledge from the healthcare facility, in order to define and tune data driven analysis rules. The use of benchmarking in the energy audit of healthcare facilities enables immediate comparison between hospitals. Data driven energy analysis also allows ascertaining their expected energy consumption and estimating the possible savings margin by using the building energy flow chart. In the 2015–2017 periods, bench-marking of four public hospitals in Seoul were audited for the energy consumption related to weather conditions, total area, bed numbers, employee numbers, and analyzed for building energy flow by zones, energy sources, systems and equipment. This is a practice-based learning in a hospital project. The results reveal that the average annual energy consumption of a hospital under normal conditions, and energy efficiency factors are divided into energy baselines, energy consumption goals for energy saving and energy usage trends for setting ECMs, respectively. The indicator dependent on the area of inpatients (number of beds) proved to be the most suitable as a reference to quantify the energy consumption of a hospital.


Author(s):  
Maryam Mohsenzadeh ◽  
Massoomeh Hedayati Marzbali ◽  
Mohammad Javad Maghsoodi Tilaki ◽  
Aldrin Abdullah

Abstract Malaysia is a nation that has undergone a massive development based on its abundance of fuel supply. The imbalance ratio between gross domestic products and energy demand clearly indicates the need to promote energy-efficiency strategies in the country. This study investigates the relationship between building shape and energy consumption by considering the control of excessive solar radiation in a tropical climate. In the first step, four basic plan geometries, namely, square, rectangle, triangle and circle shapes, are studied to determine the optimal building shape in terms of energy consumption in Penang, Malaysia. Results of simulation analysis using DesignBuilder software (Version 5.4.0) reveal that the circle is the most suitable form in terms of energy performance. In the second step, all buildings with extended shapes based on the optimal shape obtained from the first step are simulated under the same condition to analyse the thermal behaviour of different building forms. Amongst four alternative extended cases, Case 3 with 90 cm depth and without vertical offset from the top of the window has superior energy performance and sufficient natural daylight. This study contributes to enhance energy efficiency of new buildings by incorporating design strategies in the design process.


Sign in / Sign up

Export Citation Format

Share Document