scholarly journals Gene Expression Studies to Identify Significant Genes in AR, MTOR, MAPK Pathways and their Overlapping Regulatory Role in Prostate Cancer

2019 ◽  
Vol 16 (3) ◽  
Author(s):  
Nimisha Asati ◽  
Abhinav Mishra ◽  
Ankita Shukla ◽  
Tiratha Raj Singh

AbstractGene expression studies revealed a large degree of variability in gene expression patterns particularly in tissues even in genetically identical individuals. It helps to reveal the components majorly fluctuating during the disease condition. With the advent of gene expression studies many microarray studies have been conducted in prostate cancer, but the results have varied across different studies. To better understand the genetic and biological regulatory mechanisms of prostate cancer, we conducted a meta-analysis of three major pathways i.e. androgen receptor (AR), mechanistic target of rapamycin (mTOR) and Mitogen-Activated Protein Kinase (MAPK) on prostate cancer. Meta-analysis has been performed for the gene expression data for the human species that are exposed to prostate cancer. Twelve datasets comprising AR, mTOR, and MAPK pathways were taken for analysis, out of which thirteen potential biomarkers were identified through meta-analysis. These findings were compiled based upon the quantitative data analysis by using different tools. Also, various interconnections were found amongst the pathways in study. Our study suggests that the microarray analysis of the gene expression data and their pathway level connections allows detection of the potential predictors that can prove to be putative therapeutic targets with biological and functional significance in progression of prostate cancer.

2009 ◽  
Vol 2 (1) ◽  
Author(s):  
Ivan P Gorlov ◽  
Jinyoung Byun ◽  
Olga Y Gorlova ◽  
Ana M Aparicio ◽  
Eleni Efstathiou ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 636
Author(s):  
Ivana Samaržija

Anticancer therapies mainly target primary tumor growth and little attention is given to the events driving metastasis formation. Metastatic prostate cancer, in comparison to localized disease, has a much worse prognosis. In the work presented here, groups of genes that are common to prostate cancer metastatic cells from bones, lymph nodes, and liver and those that are site-specific were delineated. The purpose of the study was to dissect potential markers and targets of anticancer therapies considering the common characteristics and differences in transcriptional programs of metastatic cells from different secondary sites. To that end, a meta-analysis of gene expression data of prostate cancer datasets from the GEO database was conducted. Genes with differential expression in all metastatic sites analyzed belong to the class of filaments, focal adhesion, and androgen receptor signaling. Bone metastases undergo the largest transcriptional changes that are highly enriched for the term of the chemokine signaling pathway, while lymph node metastasis show perturbation in signaling cascades. Liver metastases change the expression of genes in a way that is reminiscent of processes that take place in the target organ. Survival analysis for the common hub genes revealed involvements in prostate cancer prognosis and suggested potential biomarkers.


2020 ◽  
Author(s):  
Gregor Sturm ◽  
Markus List ◽  
Jitao David Zhang

Background: Lack of reproducibility in gene expression studies has recently attracted much attention in and beyond the biomedical research community. Previous efforts have identified many underlying factors, such as batch effects and incorrect sample annotations. Recently, tissue heterogeneity, a consequence of unintended profiling of cells of other origins than the tissue of interest, was proposed as a source of variance that exacerbates irreproducibility and is commonly ignored. Results: Here, we systematically analyzed 2,692 publicly available gene expression datasets including 78,332 samples for tissue heterogeneity. We found a prevalence of tissue heterogeneity in gene expression data that affects on average 5-15% of the samples, depending on the tissue type. We distinguish cases of severe heterogeneity, which may be caused by mistakes in annotation or sample handling, from cases of moderate heterogeneity, which are more likely caused by tissue infiltration or sample contamination. Conclusions: Tissue heterogeneity is a widespread issue in publicly available gene expression datasets and thus an important source of variance that should not be ignored. We advocate the application of quality control methods such as BioQC to detect tissue heterogeneity prior to mining or analysing gene expression data.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Juliana Albano de Guimarães ◽  
Bidossessi Wilfried Hounpke ◽  
Bruna Duarte ◽  
Ana Luiza Mylla Boso ◽  
Marina Gonçalves Monteiro Viturino ◽  
...  

AbstractPterygium is a common ocular surface condition frequently associated with irritative symptoms. The precise identity of its critical triggers as well as the hierarchical relationship between all the elements involved in the pathogenesis of this disease are not yet elucidated. Meta-analysis of gene expression studies represents a novel strategy capable of identifying key pathogenic mediators and therapeutic targets in complex diseases. Samples from nine patients were collected during surgery after photo documentation and clinical characterization of pterygia. Gene expression experiments were performed using Human Clariom D Assay gene chip. Differential gene expression analysis between active and atrophic pterygia was performed using limma package after adjusting variables by age. In addition, a meta-analysis was performed including recent gene expression studies available at the Gene Expression Omnibus public repository. Two databases including samples from adults with pterygium and controls fulfilled our inclusion criteria. Meta-analysis was performed using the Rank Production algorithm of the RankProd package. Gene set analysis was performed using ClueGO and the transcription factor regulatory network prediction was performed using appropriate bioinformatics tools. Finally, miRNA-mRNA regulatory network was reconstructed using up-regulated genes identified in the gene set analysis from the meta-analysis and their interacting miRNAs from the Brazilian cohort expression data. The meta-analysis identified 154 up-regulated and 58 down-regulated genes. A gene set analysis with the top up-regulated genes evidenced an overrepresentation of pathways associated with remodeling of extracellular matrix. Other pathways represented in the network included formation of cornified envelopes and unsaturated fatty acid metabolic processes. The miRNA-mRNA target prediction network, also reconstructed based on the set of up-regulated genes presented in the gene ontology and biological pathways network, showed that 17 target genes were negatively correlated with their interacting miRNAs from the Brazilian cohort expression data. Once again, the main identified cluster involved extracellular matrix remodeling mechanisms, while the second cluster involved formation of cornified envelope, establishment of skin barrier and unsaturated fatty acid metabolic process. Differential expression comparing active pterygium with atrophic pterygium using data generated from the Brazilian cohort identified differentially expressed genes between the two forms of presentation of this condition. Our results reveal differentially expressed genes not only in pterygium, but also in active pterygium when compared to the atrophic ones. New insights in relation to pterygium’s pathophysiology are suggested.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Gregor Sturm ◽  
Markus List ◽  
Jitao David Zhang

Abstract Lack of reproducibility in gene expression studies is a serious issue being actively addressed by the biomedical research community. Besides established factors such as batch effects and incorrect sample annotations, we recently reported tissue heterogeneity, a consequence of unintended profiling of cells of other origins than the tissue of interest, as a source of variance. Although tissue heterogeneity exacerbates irreproducibility, its prevalence in gene expression data remains unknown. Here, we systematically analyse 2 667 publicly available gene expression datasets covering 76 576 samples. Using two independent data compendia and a reproducible, open-source software pipeline, we find a prevalence of tissue heterogeneity in gene expression data that affects between 1 and 40% of the samples, depending on the tissue type. We discover both cases of severe heterogeneity, which may be caused by mistakes in annotation or sample handling, and cases of moderate heterogeneity, which are likely caused by tissue infiltration or sample contamination. Our analysis establishes tissue heterogeneity as a widespread phenomenon in publicly available gene expression datasets, which constitutes an important source of variance that should not be ignored. Consequently, we advocate the application of quality-control methods such as BioQC to detect tissue heterogeneity prior to mining or analysing gene expression data.


2013 ◽  
Vol 14 (1) ◽  
pp. 457-461 ◽  
Author(s):  
Xiang-Yang Wang ◽  
Jian-Wei Hao ◽  
Rui-Jin Zhou ◽  
Xiang-Sheng Zhang ◽  
Tian-Zhong Yan ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 945
Author(s):  
Samarendra Das ◽  
Shesh N. Rai

Genome-wide expression study is a powerful genomic technology to quantify expression dynamics of genes in a genome. In gene expression study, gene set analysis has become the first choice to gain insights into the underlying biology of diseases or stresses in plants. It also reduces the complexity of statistical analysis and enhances the explanatory power of the obtained results from the primary downstream differential expression analysis. The gene set analysis approaches are well developed in microarrays and RNA-seq gene expression data analysis. These approaches mainly focus on analyzing the gene sets with gene ontology or pathway annotation data. However, in plant biology, such methods may not establish any formal relationship between the genotypes and the phenotypes, as most of the traits are quantitative and controlled by polygenes. The existing Quantitative Trait Loci (QTL)-based gene set analysis approaches only focus on the over-representation analysis of the selected genes while ignoring their associated gene scores. Therefore, we developed an innovative statistical approach, GSQSeq, to analyze the gene sets with trait enriched QTL data. This approach considers the associated differential expression scores of genes while analyzing the gene sets. The performance of the developed method was tested on five different crop gene expression datasets obtained from real crop gene expression studies. Our analytical results indicated that the trait-specific analysis of gene sets was more robust and successful through the proposed approach than existing techniques. Further, the developed method provides a valuable platform for integrating the gene expression data with QTL data.


Sign in / Sign up

Export Citation Format

Share Document