On a non-stationary, non-Newtonian lubrication problem with Tresca fluid-solid law

2019 ◽  
Vol 27 (5) ◽  
pp. 719-730 ◽  
Author(s):  
Djamila Benterki ◽  
Hamid Benseridi ◽  
Mourad Dilmi

Abstract The paper deals with the theoretical analysis of a non-Newtonian lubrication problem in a dynamic regime in a three-dimensional thin domain {\Omega^{\varepsilon}} with Tresca friction law. The problem statement and variational formulation of the problem are formulated. Then the problem is reformulated in a fixed domain, in which case the estimates on velocity and pressure are proved. These estimates are useful in order to give a specific Reynolds equation associated with variational inequalities and prove the uniqueness.

Author(s):  
Y. Letoufa ◽  
H. Benseridi ◽  
M. Dilmi

Asymptotic analysis of an incompressible Stokes fluid in a dynamic regime in a three-dimensional thin domain [Formula: see text] with mixed boundary conditions and Tresca friction law is studied in this paper. The problem statement and variational formulation of the problem are reformulated in a fixed domain. In which case, the estimates on velocity and pressure are proved. These estimates will be useful in order to give a specific Reynolds equation associated with variational inequalities and prove the uniqueness.


2019 ◽  
Vol 27 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Aissa Benseghir ◽  
Hamid Benseridi ◽  
Mourad Dilmi

Abstract In this paper, we study the theoretical analysis of a frictionless contact between two general elastic bodies in a stationary regime in a three-dimensional thin domain {\Omega^{\varepsilon}} with Tresca friction law. Firstly, the problem statement and variational formulation are presented. We then obtain the estimates on displacement independently of the parameter ε. Finally, we obtain the main results concerning the limit of a weak problem and its uniqueness.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Soumia Manaa ◽  
Salah Boulaaras ◽  
Hamid Benseridi ◽  
Mourad Dilmi ◽  
Sultan Alodhaibi

In this paper, we consider the Brinkman equation in the three-dimensional thin domain ℚ ε ⊂ ℝ 3 . The purpose of this paper is to evaluate the asymptotic convergence of a fluid flow in a stationary regime. Firstly, we expose the variational formulation of the posed problem. Then, we presented the problem in transpose form and prove different inequalities for the solution u ε , p ε independently of the parameter ε . Finally, these estimates allow us to have the limit problem and the Reynolds equation and establish the uniqueness of the solution.


Author(s):  
Alexei Chichinin ◽  
Christof Maul ◽  
Karl-Heinz Gericke

The photodissociation dynamics of PCl3 at 235 nm has been studied by monitoring ground state Cl(2P3/2) and spin-orbitally excited Cl(2P1/2) atoms by resonance enhanced multiphoton ionization(REMPI). Also, the PCl+n (n=0,1,2)...


2013 ◽  
Vol 694-697 ◽  
pp. 3020-3024
Author(s):  
Hong Bing Wang ◽  
Zhi Rong Li ◽  
Chun Hua Sun

The dynamic performance of the piezoelectric vibrator used in ultrasonic EDM machine in natural frequencies has a great effect on machining precision. Firstly, Through theoretical analysis the dynamic characteristics of the piezoelectric vibrator is obtained. Then the three-dimensional model of the piezoelectric vibrator is constructed by using PRO/E software, and model analysis is carried by using FEM software. Through theoretical analysis and FEM simulation, the appropriate working frequency and mode of the piezoelectric vibrator was found, and the piezoelectric vibrator was fabricated. Experimented results show that the model analysis of frequency is accord with that of FEM.


Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 44
Author(s):  
Christian Ziese ◽  
Cornelius Irmscher ◽  
Steffen Nitzschke ◽  
Christian Daniel ◽  
Elmar Woschke

The vibration behaviour of turbocharger rotors is influenced by the acting loads as well as by the type and arrangement of the hydrodynamic bearings and their operating condition. Due to the highly non-linear bearing behaviour, lubricant film-induced excitations can occur, which lead to sub-synchronous rotor vibrations. A significant impact on the oscillation behaviour is attributed to the pressure distribution in the hydrodynamic bearings, which is influenced by the thermo-hydrodynamic conditions and the occurrence of outgassing processes. This contribution investigates the vibration behaviour of a floating ring supported turbocharger rotor. For detailed modelling of the bearings, the Reynolds equation with mass-conserving cavitation, the three-dimensional energy equation and the heat conduction equation are solved. To examine the impact of outgassing processes and thrust bearing on the occurrence of sub-synchronous rotor vibrations separately, a variation of the bearing model is made. This includes run-up simulations considering or neglecting thrust bearings and two-phase flow in the lubrication gap. It is shown that, for a reliable prediction of sub-synchronous vibrations, both the modelling of outgassing processes in hydrodynamic bearings and the consideration of thrust bearing are necessary.


2004 ◽  
Vol 43 (16) ◽  
pp. 4867-4879 ◽  
Author(s):  
Vladislav V. Vrajmasu ◽  
Eckard Münck ◽  
Emile L. Bominaar

2011 ◽  
Vol 317-319 ◽  
pp. 2107-2112
Author(s):  
Song Ying Chen ◽  
Fu Chao Xie ◽  
Jun Jie Mao

Based on two different mixing systems: Rotary Jet Mixing (RJM) system and side-entering agitator, two kinds of three-dimensional gasoline components mixing models are established. The incompressible Reynolds equation is selected as the momentum equation and the algorithm of SIMPLE is used to simulate the jet facility. To get the mixing time, moving mesh and the standard k-ε turbulent model has been employed in the multiphase unsteady flow. The results show that the dead areas of RJM are less than side-entering agitator, and the mixing effects are much better. Furthermore, the mixing time of RJM is only 58.2s, which is 69.7% of Side-entering Agitator.


1983 ◽  
Vol 105 (3) ◽  
pp. 468-470 ◽  
Author(s):  
T. E. Shoup ◽  
D. Chi

This paper presents a theoretical analysis and a design technique for the use of a special type of adjustable spatial slider crank mechanism to replace the swash plate device commonly used as a variable displacement pump or compressor. This paper is an extension of a previous research effort utilizing the RSSP mechanism [7] and considers the influence of geometric proportions of a device on stroke size, velocity fluctuation, and force transmission effectiveness. The device is shown to have significant kinematic advantages over the traditional form of the swash plate mechanism. Design curves are presented and an example application is provided.


Sign in / Sign up

Export Citation Format

Share Document