scholarly journals Effect of aggregate gradation on rutting of asphalt concrete by using a wheel tracking device in Vietnam

2018 ◽  
Vol 27 (5-6) ◽  
Author(s):  
Long Nguyen Hoang ◽  
Thanh Hai Le

AbstractThis paper presents the relationship between rutting and aggregate gradation of asphalt concrete using a wheel tracking device at 60°C, with 30,000 cycles in air. The experiment was carried out on hot mix asphalt samples using three aggregate gradations which included maximum aggregate sizes of 9.5 mm, 12.5 mm and 19 mm. The result of the experiment showed that the maximum aggregate size has a great influence on the rutting of asphalt concrete.

2016 ◽  
Vol 78 (4) ◽  
Author(s):  
Wardati Hashim ◽  
Mohd Rosli Hainin ◽  
Norfarah Nadia Ismail ◽  
Nur Izzi Md. Yusoff ◽  
Mohd Ezree Abdullah ◽  
...  

This paper aims to investigate the environmental effect on cooling rate and to determine the appropriate time available for compaction (TAC) using laboratory tests. This includes the study parameters, namely solar flux, base and ambient temperatures (daytime and night-time paving) and wind velocity, focusing on hot mix asphalt (HMA) asphalt concrete wearing with 14 mm nominal maximum aggregate size (ACW14) mix type for the wearing course and ACB28 mix type for the binder course. Samples were prepared in slab moulds 30.5 cm × 30.5 cm × 5 cm and compacted using a manually operated steel-roller. Readings were taken by averaging the temperature measurements at the middle and surface of the slabs and a temperature of 160 ºC was used as the mixing temperature. A control sample was prepared for each mix type and tested in the laboratory without the influence of wind velocity and solar flux. It was found that the cooling rate of HMA is significantly affected by environmental factors, thus influencing the TAC. The TAC tends to decrease by 15-50% during windy and night conditions but increases by up to 100% during daytime conditions compared to the control samples.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Seong-Hyeok Lee ◽  
Dae-Wook Park ◽  
Hai Viet Vo ◽  
Samer Dessouky

The research has been initiated to develop the asphalt mixtures which are suitable for the surface of asphalt concrete directly fastened track (ADFT) system and evaluate the performance of the asphalt mixture. Three aggregate gradations which are upper (finer), medium, and below (coarser). The nominal maximum aggregate size of asphalt mixture was 10 mm. Asphalt mixture design was conducted at 3 percent air voids using Marshall mix design method. To make impermeable asphalt mixture surface, the laboratory permeability test was conducted for asphalt mixtures of three different aggregate gradations using asphalt mixture permeability tester. Moisture susceptibility test was conducted based on AASHTO T 283. The stripping percentage of asphalt mixtures was measured using a digital camera and analyzed based on image analysis techniques. Based on the limited research results, the finer aggregate gradation is the most suitable for asphalt mixture for ADFT system with the high TSR value and the low stripping percentage and permeable coefficient. Flow number and beam fatigue tests for finer aggregate asphalt mixture were conducted to characterize the performance of asphalt mixtures containing two modified asphalt binders: STE-10 which is styrene-butadiene-styrene (SBS) polymer and ARMA which is Crum rubber modified asphalt. The performance tests indicate that the STE-10 shows the higher rutting life and fatigue life.


Author(s):  
Tongyan Pan ◽  
Erol Tutumluer ◽  
Samuel H. Carpenter

The resilient modulus measured in the indirect tensile mode according to ASTM D 4123 reflects effectively the elastic properties of asphalt mixtures under repeated load. The coarse aggregate morphology quantified by angularity and surface texture properties affects resilient modulus of asphalt mixes; however, the relationship is not yet well understood because of the lack of quantitative measurement of coarse aggregate morphology. This paper presents findings of a laboratory study aimed at investigating the effects of the material properties of the major component on the resilient modulus of asphalt mixes, with the coarse aggregate morphology considered as the principal factor. With modulus tests performed at a temperature of 25°C, using coarse aggregates with more irregular morphologies substantially improved the resilient modulus of asphalt mixtures. An imaging-based angularity index was found to be more closely related to the resilient modulus than an imaging-based surface texture index, as indicated by a higher value of the correlation coefficient. The stiffness of the asphalt binder also had a strong influence on modulus. When the resilient modulus data were grouped on the basis of binder stiffnesses, the agreement between the coarse aggregate morphology and the resilient modulus was significantly improved in each group. Although the changes in aggregate gradation did not significantly affect the relationship between the coarse aggregate morphology and the resilient modulus, decreasing the nominal maximum aggregate size from 19 mm to 9.5 mm indicated an increasing positive influence of aggregate morphology on the resilient modulus of asphalt mixes.


2018 ◽  
Vol 10 (8) ◽  
pp. 2590 ◽  
Author(s):  
Debora Acosta Alvarez ◽  
Anadelys Alonso Aenlle ◽  
Antonio Tenza-Abril

Recycled Aggregates (RA) from construction and demolition waste (CDW) are a technically viable alternative to manufacture of asphalt concrete (AC). The main objective of this work is to evaluate the properties of hot asphalt mixtures that have been manufactured with different sources of CDW (material from concrete test specimens, material from the demolition of sidewalks and waste from prefabrication plants) from Cuba. Dense asphalt mixtures were manufactured with a maximum aggregate size of 19 mm, partially replacing (40%) the natural aggregate fraction measured between 5 mm and 10 mm with three types of RA from Cuba. Marshall specimens were manufactured to determine the main properties of the AC in terms of density, voids, stability and deformation. Additionally, the stiffness modulus of the AC was evaluated at 7 °C, 25 °C and 50 °C. The results corroborate the potential for using these sources of CDW from Cuba as a RA in asphalt concrete, thereby contributing an important environmental and economic benefit.


2021 ◽  
Vol 879 ◽  
pp. 117-125
Author(s):  
Dang Tung Dang ◽  
Manh Tuan Nguyen ◽  
Ngoc Tram Hoang ◽  
Anh Thang Le

Currently, application of industrial waste or by-product in road construction industrials is a major interest by researchers, government officers and engineers. Coal ashes by-product from industrial parks negatively impact environment, costly in treatment, and require large ground for disposing areas. Therefore, this paper proposes on using the coal ash from furnace products of an industrial park in South of Vietnam to be incorporated into dense graded asphalt concrete using Nominal Maximum Aggregate Size 12.5mm. Laboratory performance tests including Marshall stability, indirect tensile strength, Cantabro loss, and dynamic fatigue test were conducted. The effects of coal ash contents in replacement of fine aggregate which is passing 4.75mm sieve from asphalt mixture into laboratory performance of mixture is also discussed in detail.


2011 ◽  
Vol 374-377 ◽  
pp. 1400-1404 ◽  
Author(s):  
Ji Tan Guo ◽  
Rui Zhang ◽  
Rui Wang

OGFC can reduce traffic noise which has very high air-void contents to absorb tire-pavement noise. This paper proposes maximum aggregate size and aggregate gradation of OGFC with the objective void of 20%. Performance of modified asphalt and best asphalt-aggregate ratio are also proposed with four kinds of modifiers, including SBS, rubber, EVA and PVC. The absorption coefficients of the four kinds of OGFC and the dense-graded Marshall specimens were tested with standing wave tube. Then their sound absorption performances were compared.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4704
Author(s):  
Waqas Rafiq ◽  
Madzlan Bin Napiah ◽  
Muslich Hartadi Sutanto ◽  
Wesam Salah Alaloul ◽  
Zarisha Nadia Binti Zabri ◽  
...  

Moisture damage in hot mix asphalt pavements is a periodic but persistent problem nowadays, even though laboratory testing is performed to identify different moisture-susceptible mixtures. In this study, a Hamburg Wheel Tracking device (HWTD) was used for rutting tests which were conducted on control and a high percentage of recycled asphalt pavement (RAP), i.e., 30%, 50% and 100% of virgin mixtures, under air dry and water-immersed conditions. Similarly, the extracted bitumen from RAP was tested for binder physical properties. Results showed that the asphalt mixtures containing RAP have less rut depth as compared to the control mix both in air dry and immersion conditions and hence showed better anti-rutting properties and moisture stability. Stripping performance of control and RAP containing mixtures was also checked, concluding that the RAP mixture was greatly dependent on the interaction between the binder (virgin plus aged) and aggregates.


Sign in / Sign up

Export Citation Format

Share Document