scholarly journals Effect of pouring temperature on cast Al/SiCp and Al/TiB2 metal matrix composites

2019 ◽  
Vol 28 (1) ◽  
pp. 162-168 ◽  
Author(s):  
C. Rajaravi ◽  
B. Gobalakrishnan ◽  
P. R. Lakshminarayanan

AbstractThe effect of pouring temperatures of an ex situ (Al/SiCp) and in situ (Al/TiB2) metal matrix composites (MMCs) synthesized using stir casting method were studied. The Al/SiCp composite were fabricated by mixing of 6wt.% of SiCp into cast A356 aluminium alloy melt and poured at diverse pouring temperatures (730∘C, 750∘C and 770∘C). The Al/TiB2 MMCs were obtained by melting A356 aluminium alloy and mixing of KBF4 and K2TiF6 precursor salts whose stoichiometric ratio composition corresponds to 6wt.% of TiB2 reinforcement and other parameters were constant (stirring speed 300 RPM and holding time 30 minutes). The composite melt was poured into the permanent mould with varied pouring temperatures (800∘C, 820∘C and 840∘C). Coarser and homogenous SiC particles were presented in the Al/SiCp MMCs, whereas, finer and uniformly distributed TiB2 particles were appeared at the MMCs of Al/TiB2. The mechanical properties viz. tensile strength, fracture toughness and hardness of Al/SiCp and Al/TiB2 MMCs were experimentally determined as per the ASTM standards and compared. Higher tensile and fracture strength were occurred at the MMCs of Al/TiB2 as compared to Al/SiCp MMCs and base alloy of aluminium as well. Maximum hardness was attained at the pouring temperatures of 820∘C and 750∘C in the MMCs of Al/ TiB2 and Al/SiCp, respectively.

2015 ◽  
Vol 766-767 ◽  
pp. 301-307 ◽  
Author(s):  
S. Dhanalakshmi ◽  
M. Jaivignesh ◽  
A. Suresh Babu ◽  
K. Shanmuga Sundaram

Metal matrix composites are the resultant of combination of two or more elements or compounds, possessing enhanced characteristics than the individual constituents present in them. This paper deals with the fabrication of Al 2014-SiC composite and investigation of its Microstructure and Mechanical properties. 2014 Aluminium alloy is characterized by good hardness. It is selected as the base metal. The Silicon Carbide is characterized by good strength and low density (3.21 g/cm3). It is chosen as the reinforcement. Silicon Carbide is coated with Nickel by electroless method to increase its wettability and binding properties. The fabrication of metal matrix composites is done by stir casting in a furnace, by introducing the required quantities of reinforcement into molten Aluminium alloy. The reinforcement and alloy is mixed by means of stirring, with the help of a stirrer. The base alloy and the composites are then tested for mechanical properties such as tensile strength, flexural strength, impact strength and hardness. The fabricated samples have higher tensile strength and impact strength than the alloy. Microstructure of the samples, are analyzed using optical microscope.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1034
Author(s):  
Bettina Camin ◽  
Lennart Hansen

In transportation light metal matrix composites (L-MMCs) are used increasingly due to their improved creep resistance even at higher application temperatures. Therefore, the creep behavior and failure mechanisms of creep loaded particle reinforced L-MMCs have been investigated intensively. Until now, creep damage analyses are usually performed ex situ by means of interrupted creep experiments. However, ex situ methods do not provide sufficient information about the evolution of creep damage. Hence, in situ synchrotron X-ray 3D-µ-tomography investigations were carried out enabling time and space resolved studies of the damage mechanisms in particle-reinforced titanium- and aluminum-based metal matrix composites (MMCs) during creep. The 3D-data were visualized and existing models were applied, specifying the phenomenology of the damage in the early and late creep stages. During the early stages of creep, the damage is determined by surface diffusion in the matrix or reinforcement fracture, both evolving proportionally to the macroscopic creep curve. In the late creep stages the damage mechanisms are quite different: In the Al-MMC, the identified mechanisms persist proportional to creep strain. In contrast, in the titanium-MMC, a changeover to the mechanism of dislocation creep evolving super-proportionally to creep strain occurs.


Aluminium compound materials saw to be the best choice with its exceptional utmost of sketching out the novel material for gaining desired properties. Aluminium alloy based composite materials are expanding broad affirmation for aeronautics application in perspective on their high strength combined with low density or light weight. In the present concerned work, an endeavour is put to prepare and focus the tensile and compressive behaviour of Aluminium alloy LM13 and Solid Glass Microspheres (SGM) particulates Composite with perspective to get better properties with light weight. Stir casting method was used to manufacture these aluminium alloy LM13 and SGM particulate composite with 10 v%, 15 v% and 20 v% of reinforcement. Based on ASTM benchmarks, the composite samples were prepared and tested, and the results obtained were then analysed. A notable improvement was perceived in the strength of tensile and compressive capacities of the developed metal matrix composites (MMC).


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4323-4336 ◽  
Author(s):  
Priyaranjan Samal ◽  
Pandu R Vundavilli ◽  
Arabinda Meher ◽  
Manas Mohan Mahapatra

In this paper, aluminium metal matrix composites were synthesized through in situ process in which aluminium alloy 5052 (AA5052) and titanium carbide were used as matrix and reinforcement materials, respectively. The microstructural characterization and formation of stable TiC phases were analyzed with the help of field emission scanning electron microscope, X-ray diffraction analysis, respectively. The 9% TiC-reinforced MMCs had shown a considerable improvement, i.e. 32% increase in hardness, 78% in ultimate tensile strength and 116% increase in yield strength when compared with the base alloy. The tensile fracture of the specimens shows dimples, voids, cracks, and ridges indicating the brittle nature. Further, the dry sliding wear properties of the composites were studied with the help of a pin-on-disc wear testing machine. The composite with 9% TiC exhibited a decrease in volumetric wear loss by 24% when compared with the base alloy at a load of 30 N. With increase in the TiC content and applied load, the COF values decreased linearly for the composites. The 9% TiC-reinforced composites show an abrasive mode of wear mechanism as a result of formation of deep grooves with no plastic deformation. With the improvement obtained in the wear properties, this metal matrix composite can be considered as a replacement for the conventional brake disc material used in the automobile industry.


Todays composite material have gained more popularity due to their improved properties over the conventional materials. In the present paper, insitu composites were fabricated via chemical reaction between molten aluminium alloy and halide salt KBF4 with cryolite at 8000C by stir casting method. The microstructures of the composite containing 3 and 5 wt. % of AlB2 reinforcement phase have been compared with the unreinforced aluminium alloy. The microstructure analysis shows clean AlB2 particles uniformly distributed throughout the matrix. With the increase in the AlB2 reinforcement, insitu composite show less agglomeration and recovery of boron is more when compared to the unmixed halide salt in the fabrication of inistu composite


2018 ◽  
Vol 70 (4) ◽  
pp. 818-827 ◽  
Author(s):  
Viswanatha B.M. ◽  
M. Prasanna Kumar ◽  
S. Basavarajappa ◽  
T.S. Kiran

Purpose This paper aims to investigate the wear behaviors of aged metal matrix composites and of the as-cast Al-Si alloy by using a pin-on-disk wear testing machine at room temperature. Design/methodology/approach Hypoeutectic (Al-7Si) alloy reinforced with low volume fractions of SiC particles (SiCp) and graphite (Gr) particles were prepared by the stir-casting process. It was found that the addition of 9 Wt.% of SiCp and 3 Wt.% of Gr particles conferred a beneficial effect in reducing the wear rate of the composites. Findings The worn-out surfaces of the specimens were examined using scanning electron microscopy (SEM); the extensive micro cracking occurs on the surface of the Al-7Si alloy tested at lower loads. The growth of these microcracks finally led to the delamination of the base alloy surface. The reinforcements (SiCp and Gr) particles tended to reduce the extent of plastic deformation in the surface layer, thereby reducing extensively the occurrence of micro cracking in the composites. Originality/value From the results, it is revealed that the quantity of wear rate was less for aged specimens compared to the as-cast specimens. The worn-out surfaces were studied using electron dispersive spectroscopy, and wear debris was analyzed using SEM.


2008 ◽  
Vol 47-50 ◽  
pp. 738-741 ◽  
Author(s):  
Jonathon Mak ◽  
Richard Wuhrer ◽  
Greg Heness ◽  
Wing Yiu Yeung ◽  
M. Callaghan ◽  
...  

Particulate reinforced 10 vol.% (TiB+TiC)/Ti-6Al-4V metal matrix composites (MMCs) were produced by in-situ synthesis using vacuum arc re-melting process, and the mechanical properties of the metal matrix composites were assessed by the small punch testing (SPT). Mechanical properties of the in-situ synthesized Ti MMCs were studied and compared with the Ti base alloy. From the test data, the fracture properties and equivalent fracture strain of the test materials were characterised. The fracture mechanism of the test samples was examined using scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document