Performance Evaluation of the Optical AND Gate at 200 Gbps

2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Devendra Kr. Tripathi

AbstractThe article explores performance investigation for the all optical AND logic gate at the 200 Gbps data rate. Numerical simulations have been executed and output pattern for the AND logic operation has been verified. Accordingly good extinction ratio of 15.8 dB has been observed. Investigations depict optimum optical performance metric with the key deign parameters as the pump power (>1e-4 W), pump current (>1 ‎Å), current injection efficiency (>0.5), modulator bias voltage (>1.25 V), modulator on off ratio (>10 dB) and the SOA reflectivity (>0 dB). The schematic is evident, simpler tender’s option to endow different input combinations simultaneously. Furthermore, the outcomes are well sustainable to formulate forthcoming advanced higher data rate all-optical digital processing.

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Devendra Kr. Tripathi

AbstractAll optical logic gates are the key elements of contemporary optical computing unit. For that non-linear attribute of reflective semiconductor optical amplifier (RSOA) is exploited to configure optical logic gates. Accordingly, in the manuscript all optical OR/NOR/Buffer binary logic network for the nonreturn to zero format has been designed. Its operation at 100 Gbps data rate has been successfully realized. For the applied data inputs in nonreturn to zero patterns, their corresponding output waveforms for the stated logic action have been verified. Numerical investigations for the imperative design constraints as data rate, injected power and imperative elements of the semiconductor optical amplifiers (SOAs) pump current, carrier density, active length, confine factor, laser power has been appropriately executed with optimum performance. It has depicted good extinction ratio (>10 dB) performance with confine factor more than 0.2 and higher carrier density of amplifier. Further, it also accomplished, that for the OR, buffer logic execution with lower power of pump laser and for the NOR logic execution higher power laser pump source is required. The proposed design could fulfill need for the impending higher data rate composite optical computing units.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Devendra Kumar Tripathi

Abstract All optical signal processing is one of the growing area, finds relevance where fast computing speed is one of the vital concern. Optical sequential logic system is the backbone of the ultrafast processing network. Accordingly, this article explores proposed optical sequential schemes for the JK and T-type optical flip flop’s investigation at higher data rate. The outputs have been verified for the JK and T-type flip flops. Numerical simulations showed ER of 11.6 and 10 dB for the executed designs. Design have been investigated for variation in pump current, data rate (10–100 Gbps), peak power, bias voltage yielded the optimal performance with ER of over 12 dB. This schematic is simple excludes expensive optoelectronic translation and outcomes are well helpful for the design of complex sequential logic operations.


2019 ◽  
Vol 40 (4) ◽  
pp. 385-392
Author(s):  
Devendra Kr. Tripathi

Abstract In the contemporary world there is enormous hike in communication engineering applications, outcome with massive heat dissipation from the processing nodes. So energy efficient information network is one of paramount issue nowadays. For that optical reversible computing could be a landmark with base as optical logic gate. Reduction in power dissipation, consumption could be accomplished through a blend of reversible and irreversible optical processing and the nodes may recuperate the data. Accordingly, in this article two designs with semiconductor optical amplifier, used as Mach–Zehnder interferometer based all optical reversible Feynman gate, irreversible AND logic gate within a single photonic circuit has been proposed. The output waveforms for AND logic operation, Feynman logic the P (data output identical to input), Q (A ⊕ B) has been verified at 100 Gbps data rate. The designs have been evaluated on the basis of key parameter extinction ratio factor. Numerical simulations have inferred excellent ER performance with design-2(ER>13 dB) in contrast to design-1(ER as 10.2 dB). Performance evaluations for significant deign parameters as pump current, length, width, carrier transport, confine and current injection factor yielded excellent performance. This evaluation could be an assist toward design of contemporary optical networks.


2015 ◽  
Vol 815 ◽  
pp. 353-358 ◽  
Author(s):  
Mohd Azarulsani Md Azidin ◽  
M.H.A. Wahid ◽  
N.A.M. Ahmad Hambali ◽  
M.M. Shahimin ◽  
A. Zakiah Malek

Three XOR photonics logic gate configurations namely semiconductor optical amplifier-Mach Zender interferometer cross phase modulation (SOA-MZI XPM), SOA-MZI cross gain modulation (XGM) and terahertz optical asymmetrical demultiplexer (TOAD) XOR are analysed and compared in terms of generated power, optical signal-to-noise ratio (OSNR) values and bit error rate (BER) signal quality. The highest generated power is possessed by the TOAD at 23.5 dBm, the SOA-MZI XPM showed the most extinction ratio or OSNR with 109.6 dB whereas the best BER is recorded in the SOA-MZI XGM at 4.42 x 10-22.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Kamal K. Upadhyay ◽  
Saumya Srivastava ◽  
Nikhlesh K. Mishra ◽  
N. K. Shukla

Abstract In this article, first the model of 2×2 reversible logic gate is proposed after then the performance of the proposed designed is evaluated. With the increasing flow of information, data rate is increasing very rapidly. This has resulted in increased amount of heat dissipation from the processing nodes. Generally, electronic processors dissipate heat if the data rate is very high. Hence, this model will be very helpful for solving this problem. Evaluated performance of this model is based on the value of quality factor and extinction ratio. The quality factor and extinction ratio are evaluated under different conditions. The average extinction ratio of the design is 19.58 dB and the average quality factor is 53.03 dB. The optical cost of the proposed circuit is 1.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Lokendra Singh ◽  
Santosh Kumar ◽  
Brajesh Kumar Kaushik

AbstractThe basic logic gates play a key role in performing the mathematical computation. The plasmonics has the uniqueness of confining surface plasmons beyond the diffraction limit. Plasmonic-based Mach-Zehnder interferometer with an extinction ratio of 26 dB is proposed to design the structure of all-optical XOR and XNOR logic gate. A theoretical analysis of proposed gate is carried out using finite-difference-time-domain method and MATLAB simulation results.


Author(s):  
Dao Duy Tu ◽  
Linh Duc Tam Ho ◽  
Dung Truong Cao ◽  
Hung Tan Nguyen

In this paper, an all-optical logic gate based on 2x2 (MMI) multimode interference coupler is theoretically designed and simulated using three-dimensional beam propagation method (3D-BPM) and effective index method (EIM) to analyze and evaluate the performance of the device. The proposed device is used to convert phase information of input optical signals to amplitude at the output ports of MMI. With this mechanism, the device can operates as a logical half adder. Simulation results show that the optical half adder archives with insertion loss and extinction ratio from ON to OFF logic–level below 0.7 dB and over 40 dB, respectively. Furthermore, wide bandwidth of 100nm is also an advantage of this devices. Therefore, it can be applied to all optical signal processing in next generation optical networks as well as in photonics integrated circuits.


2020 ◽  
Vol 41 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Devendra Kr. Tripathi

AbstractThis article proposed an all-digital code converter schematic. It converts input binary code into gray code output with an operating data rate of 50 Gbps. The design is based on exploiting nonlinear attributes with semiconductor optical amplifier, which is otherwise contemplated as cons if utilized as an amplifier. It is realized with a semiconductor optical amplifier placed symmetrically with both arms of Mach–Zehnder interferometer, and phase modulation occurs amid wings of the Mach–Zehnder structure. Accordingly, numerical simulations have been executed for the applied data inputs. Consequent gray code output patterns have been verified that resemble with theoretical digital logical outcome. Evaluations with design have illustrated impressive optical performance metric extinction factor beyond 10 dB for the imperative constituents and constraints, with semiconductor optical amplifier confine factor beyond 0.3, pump current of 0.4 A, active length of 0.05 mm, and with modulator chirp factor and on–off ratio beyond 0.5 and 10 dB, respectively. Accordingly, this investigation could be an assist for the impending optical computing complex networks for the contemporary digital globe, requiring code conversion as one of the imperative practices.


2020 ◽  
Vol 10 (4) ◽  
pp. 369-380
Author(s):  
K. Maji ◽  
K. Mukherjee ◽  
A. Raja

All optical tri-state frequency encoded logic gates NOT and NAND are proposed and numerically investigated using TOAD based interferometric switch for the first time to the best of our knowledge. The optical power spectrum, extinction ratio, contrast ration, and amplified spontaneous noise are calculated to analyze and confirm practical feasibility of the gates. The proposed device works for low switching energy and has high contrast and extinction ratio as indicated in this work.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jesuwanth Sugesh Ramesh Gabriel ◽  
Sivasubramanian Arunagiri

AbstractIn this paper, we report the performance of a carrier depletion Silicon PIN phase shifter with over layer of 130 nm. It is observed that an optimum intrinsic gap of 250 nm for a device length of 5 mm at 2 V, resulted in Extinction Ratio (ER) of 23.41 dB and Bit Error Rate (BER) of 1.00 × 10−7 is obtained for 50 Gbps. The phase shifter is also designed for length 2 mm with an intrinsic gap of 100 nm at an operating voltage <4 V. The study also reveals that the proposed design for Mach-Zehnder modulator operating at a data rate of 100 Gbps for the concentration of P = 7 × 1017 cm−3 and N = 5 × 1017 cm−3 gives better BER and phase performance. The proposed design was also analysed in an intra-data centre communication setup of fibre length 15 km.


Sign in / Sign up

Export Citation Format

Share Document