Performance Limits of FSO Based SAC-OCDMA System Under Weather Conditions

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Lamia Mesri ◽  
Ali Djebbari

AbstractIn this paper, the Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) is investigated in Free Space Optics (FSO) using Zero Cross Correlation (ZCC) codes to evaluate its performance limits in terms of link range. The system is analyzed under clear, haze, moderate fog and dense fog weather conditions. This system has been evaluated numerically and by simulation analysis by maintaining the transmitted power at 10 dBm, for safety reason, according to International Telecommunication Union (ITU) and minimum acceptable BER of {10}–9. The simulation results shown that the present system can transmit 622 Mbps/1 Gbps up to maximum link range of 1450 m/1100 m and 61 m/54 m under clear and dense fog conditions, respectively.

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Himali Sarangal ◽  
Amarpal Singh ◽  
Jyoteesh Malhotra ◽  
Simrandeep Singh Thapar

AbstractSpectral amplitude coding optical code division multiple access (SACOCDMA) is a multiplexing technique, which provides faster speed, efficiency, security and unlimited bandwidth. It is widely preferred because of its ability to eliminate multiple access interference (MAI). Free space optics (FSO) provides a wireless link to transmit data securely at higher rates for last mile access. In this work, a 100 Gb/s hybrid FSO-SACOCDMA is designed using direct detection. The performance of FSO using SACOCDMA utilizing NZCC (New Zero Cross Correlation) code is evaluated under different weather conditions (clear weather, haze and fog) for ten users where each user carries 10 Gb/s. The results indicate that in clear weather FSO distance can be extended up to 13 km. Moreover, after using preamplifier in clear weather, FSO enhances the maximum distance to 35 km with acceptable signal to noise ratio and bit error rate. Using an amplifier in the link not only makes the quality of the signal better but it also increases the communication range.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Waqas A. Imtiaz ◽  
Affaq Qamar ◽  
Atiq Ur Rehman ◽  
Haider Ali ◽  
Adnan Rashid Chaudhry ◽  
...  

This paper presents an efficient tree-based hybrid spectral amplitude coding optical code division multiple access (SAC-OCDMA) system that is able to provide high capacity transmission along with fault detection and restoration throughout the passive optical network (PON). Enhanced multidiagonal (EMD) code is adapted to elevate system’s performance, which negates multiple access interference and associated phase induced intensity noise through efficient two-matrix structure. Moreover, system connection availability is enhanced through an efficient protection architecture with tree and star-ring topology at the feeder and distribution level, respectively. The proposed hybrid architecture aims to provide seamless transmission of information at minimum cost. Mathematical model based on Gaussian approximation is developed to analyze performance of the proposed setup, followed by simulation analysis for validation. It is observed that the proposed system supports 64 subscribers, operating at the data rates of 2.5 Gbps and above. Moreover, survivability and cost analysis in comparison with existing schemes show that the proposed tree-based hybrid SAC-OCDMA system provides the required redundancy at minimum cost of infrastructure and operation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Majidah H. Majeed ◽  
Riyadh Khlf Ahmed

AbstractSpectral Amplitude Coding-Optical Codes Division Multiple Access (SAC-OCDMA) is a future multiplexing technique that witnessed a dramatic attraction for eliminating the problems of the internet in optical network field such as multiple-user access and speed’s growth of the files or data traffic. In this research article, the performance of SAC-OCDMA system based on two encoding–decoding multidiagonal (MD) and Walsh Hadamard (WH) codes is enhanced utilizing three different schemes of dispersion compensating fiber (DCF): pre-, post- and symmetrical compensation. The system is simulated using Optisystem version 7.0 and Optigrating version 4.2. The performance of the proposed system is specified in terms of bit error rate (BER), Q-factor and eye diagram. It has been observed that the compensated system based on MD code is performs much better compared to the system based on WH code. On the other hand, the compensated SAC-OCDMA system with symmetrical DCF has the lowest values of BER and largest values of Q-factor, so it is considered the best simulated scheme contrasted with pre- and post-DCF.


2018 ◽  
Vol 39 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Manisha Bharti ◽  
Manoj Kumar ◽  
Ajay K. Sharma

AbstractThe main task of optical code division multiple access (OCDMA) system is the detection of code used by a user in presence of multiple access interference (MAI). In this paper, new method of detection known as XOR subtraction detection for spectral amplitude coding OCDMA (SAC-OCDMA) based on double weight codes has been proposed and presented. As MAI is the main source of performance deterioration in OCDMA system, therefore, SAC technique is used in this paper to eliminate the effect of MAI up to a large extent. A comparative analysis is then made between the proposed scheme and other conventional detection schemes used like complimentary subtraction detection, AND subtraction detection and NAND subtraction detection. The system performance is characterized by Q-factor, BER and received optical power (ROP) with respect to input laser power and fiber length. The theoretical and simulation investigations reveal that the proposed detection technique provides better quality factor, security and received power in comparison to other conventional techniques. The wide opening of eye in case of proposed technique also proves its robustness.


2018 ◽  
Vol 39 (4) ◽  
pp. 459-462 ◽  
Author(s):  
Monika Rani ◽  
Harbax Singh Bhatti ◽  
Vikramjeet Singh

Abstract In this manuscript, we have analyzed a Spectral Amplitude Coding-Optical Code Division Multiple Access (SAC-OCDMA) System. The system performance is enhanced by reducing the effect of Multiple Access Interference (MAI) using uniform Fiber Bragg Gratings (FBGs) encoders and decoders at central office and subscriber’s end. The results are verified through a mathematical model and Modified Double Weight (MDW) codes for the proposed system using Adomian Decomposition Method (ADM). Further, we have demonstrated SAC-OCDMA system for transmission of 40 Gbps data rate up to a distance of 80 km by increasing the number of FBGs. The proposed system has been analyzed in terms of distance, bit error rate (BER) and Quality Factor.


2018 ◽  
Vol 8 (10) ◽  
pp. 1861 ◽  
Author(s):  
Somia Abd El-Mottaleb ◽  
Heba Fayed ◽  
Ahmed Abd El-Aziz ◽  
Mohamed Metawee ◽  
Moustafa Aly

In this paper, the performance of a spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system is investigated utilizing a single photodiode (SPD) detection technique. The proposed system uses enhanced double weight (EDW) codes as signature codes with three simultaneous users to overcome both phase-induced intensity noise (PIIN) and multiple access interference (MAI). In addition, a dispersion compensating fiber (DCF) is used in order to decrease the group velocity dispersion (GVD) caused in the single mode fiber. An erbium-doped fiber amplifier (EDFA) is used to overcome the attenuation. The use of both DCF and EDFA leads to an appreciable enhancement in the system performance. The system performance is evaluated through its bit error rate (BER), Q-factor, and received power. A comparison between the EDW codes and modified double weight (MDW) codes on the SAC-OCDMA system is demonstrated. Simulation is carried out through Optisystem ver. 7. The simulation results show that: (a) using an avalanche photodiode (APD) over PIN photodiode allows data transmission over longer distances; (b) the use of DCF improves the system BER;(c) using MDW codes gives better BER than using EDW codes.


Author(s):  
Rashid Ali Fayadh ◽  
Mousa K. Wali ◽  
Mehdi F. Bonneya

<p>Since the wireless systems are working under nature environments and influenced by turbulence, weather in Iraq that leads to extended amount of fading signal, dissipation or attenuation. Basic “hybrid Subcarrier Multiplying Spectral Amplitude Coding (SCM-SAC) of Optical Code Division Multiple Access (OCDMA)" indoor or outdoor optical system depends on generally “Multi-Diagonal (MD)" security code by using optical space known as “Free Space Optic (FSO)" that was proposed in this work. It is found that the mention hybrid wireless systems can be used in operating mesh networks. The main proposed idea of hybrid optical technique was analyzed and simulated by normally taking into simulation account that the directly effecting by rain and haze attenuations. In addition, there are mention and description for atmospheric effects, FSO mesh network, modulation scheme, simulation, and the data security. From simulation results, the hybrid system using MD code produces reduced “bit-error rate (BER)" at heavy storm rain to distance or range of 500 m and at drizzle rain up to 2500 m range. And also investigates the performance of using the proposed system with radio over fiber (RoF) for UWB signals through indoor propagation in building applications of wireless channel.</p>


Author(s):  
M. K.A. Abdullah ◽  
S. A. Aljunid ◽  
M. D.A. Samad ◽  
S. B.A. Anas ◽  
R. K.Z. Sahbudin

Many codes have been proposed for optical CDMA system as discussed in Svetislav, Mari, Zoran, Kosti, and Titlebaum (1993), Salehi (1989), Liu and Tsao (2002), Maric, Moreno, and Corrada (1996), Wei and Ghafouri-Shiraz (2002), and Prucnal, Santoro, and Ting (1986). Optical code division multiple access (OCDMA) has been recognized as one of the most important technologies for supporting many users in shared media simultaneous, and in some cases can increase the transmission capacity of an optical fiber. OCDMA is an exciting developments in short haul optical networking because it can support both wide and narrow bandwidth applications on the same network, it connects large number of asynchronous users with low latency and jitter, and permits quality of service guarantees to be managed at the physical layer, offers robust signal security and has simplified network topologies. However, for improperly designed codes, the maximum number of simultaneous users and the performance of the system can be seriously limited by the multiple access interference (MAI) or crosstalk from other users. Another issue in OCDMA is how the coding is implemented. The beginning idea of OCDMA was restricted in time domain, in which the encoding/decoding could not been fully utilized in optical domain. Therefore a new coding in OCDMA has been introduced based on spectral encoding (Kavehrad & Zaccarin, 1995; Pearce & Aazhang, 1994; Smith, Blaikie, & Taylor, 1998; Wei & Ghafouri-Shiraz, 2002). The system, called Optical Spectrum CDMA, or OS-CDMA, has the advantage of using inexpensive optical sources, and simple direct detection receivers. In this article with an emphasis on the Spectral Amplitude Coding scheme, a new code known as Khazani-Syed (KS) code is introduced.


Photonics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 60 ◽  
Author(s):  
Kai-Sheng Chen

Supporting multi-rate transmission is an essential factor in current optical packet switching (OPS) networks. In this paper, the author studied a multi-rate scheme capable of forwarding packets with different signal rates based on label switching. The multiple-code (MC) technique was employed to label a packet by conveying its payload bits to multiple optical code-division multiple-access (OCDMA) labels. Spectral-amplitude-coding (SAC), which represents the chips in an OCDMA code as a set of wavelengths, was introduced to remove the multiple-access interference (MAI) from the overlapping among labels. The author tested the system effectiveness by conducting numerical analysis to formulate bit-error probability (BEP) and spectral efficiency (SE). The simulation results showed that the proposed network had a stable BEP performance when switching the packet flows of multiple data-rates.


Sign in / Sign up

Export Citation Format

Share Document