Underwater video transmission with video enhancement using reduce hazing algorithm

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Janarthanan Mathiazhagan ◽  
Sabitha Gauni ◽  
Rajesvari Mohan

Abstract Underwater video regulation is an insightful research field that can help engineers with bettering investigation on the lowered condition. Submerged video preparing has been utilized in a many fields, such as submerged infinitesimal location, landscape examining, mine identification, media transmission connections, and self-proficient lowered vehicles. Be that as it may, submerged video experiences solid assimilation, dissipating, shading contortion, and clamor from the manufactured light sources, causing video obscure, cloudiness, and a somewhat blue or greenish tone. In this way, the improvement can be separated into two techniques, submerged video de-preliminaries and underexposed video concealing remaking. Relentless in remote correspondence structures, for instance 3G, 4G, and so on, a coming crisis is endless deftly of the nonattendance of consistently Radio Frequency (RF) resources; this deterrent in moving speed cannot strengthen the improvement notable for high information speed. So the new innovation of Light-Fidelity (Li-Fi) came into picture. This innovation can be contrasted to that of Wi-Fi and offers points of interest like expanded available spectrum efficiency, effectiveness, security, low idleness and a lot higher speed. Communication is accomplished by exchanging light-emitting diode (LED) lights on and off at a speed higher than what is detectable to the human eye. This paper presents the explanation behind underexposed picture corruption and surveys the cutting-edge knowledge calculations like video reduce hazing algorithm. In this calculation, it uses two different de-hazing methods, simple Dark Channel Prior (DCP) and Approximate Dark Channel Prior (ADCP), to reduce haze in a video.

Author(s):  
M. V. Naga Bhushanam

Videos taken under low lighting conditions usually result in severe loss of visibility and contrast and are uncomfortable for observation and analysis. Night vision cameras that cater to the needs are expensive and less versatile. To be cost effective and extract maximum information from videos taken in low lit conditions, video enhancing techniques must be used. Though there are many night vision enhancement techniques available in literature, this paper particularly emphasizes about Improved Dark Channel Prior algorithm and its results. This approach suits well for real time night video enhancement. It has been found that a pixel-wise inversion of a night video appears very similar to the video obtained during foggy days. The same idea of haze removal approach is used to boost the visual quality of night videos. An improved dark channel prior model is presented that is integrated with Gaussian Pyramid operators for local smoothing. The experimental results show that the proposed method can boost the perceptual quality of detailing in night videos.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 85
Author(s):  
Lingli Guo ◽  
Zhenhong Jia ◽  
Jie Yang ◽  
Nikola K. Kasabov

In low illumination situations, insufficient light in the monitoring device results in poor visibility of effective information, which cannot meet practical applications. To overcome the above problems, a detail preserving low illumination video image enhancement algorithm based on dark channel prior is proposed in this paper. First, a dark channel refinement method is proposed, which is defined by imposing a structure prior to the initial dark channel to improve the image brightness. Second, an anisotropic guided filter (AnisGF) is used to refine the transmission, which preserves the edges of the image. Finally, a detail enhancement algorithm is proposed to avoid the problem of insufficient detail in the initial enhancement image. To avoid video flicker, the next video frames are enhanced based on the brightness of the first enhanced frame. Qualitative and quantitative analysis shows that the proposed algorithm is superior to the contrast algorithm, in which the proposed algorithm ranks first in average gradient, edge intensity, contrast, and patch-based contrast quality index. It can be effectively applied to the enhancement of surveillance video images and for wider computer vision applications.


The enhancement of night-time video using Dark Channel Prior IP accelerator is proposed in this paper. Night time video processing is difficult due to low brightness, low contrast and high noise in the video. The above problems affect the accuracy and may results in failures of object detection in night time video. Dark Channel Prior (DCP) filter is used to improve the visibility, brightness and contrast of the video at night time. Processing speed is challenging task on real time application of DCP algorithm for night time video enhancement. Hence, DCP algorithm is implemented on FPGA (ALVEO Board) to increase the speed of video processing.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-11
Author(s):  
Ye Xin ◽  
Zhenhong Jia ◽  
Jie Yang ◽  
Nikola K. Kasabov

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1697
Author(s):  
Xicong Li ◽  
Zabih Ghassemlooy ◽  
Stanislav Zvánovec ◽  
Paul Anthony Haigh

With advances in solid-state lighting, visible light communication (VLC) has emerged as a promising technology to enhance existing light-emitting diode (LED)-based lighting infrastructure by adding data communication capabilities to the illumination functionality. The last decade has witnessed the evolution of the VLC concept through global standardisation and product launches. Deploying VLC systems typically requires replacing existing light sources with new luminaires that are equipped with data communication functionality. To save the investment, it is clearly desirable to make the most of the existing illumination systems. This paper investigates the feasibility of adding data communication functionality to the existing lighting infrastructure. We do this by designing an experimental system in an indoor environment based on an off-the-shelf LED panel typically used in office environments, with the dimensions of 60 × 60 cm2. With minor modifications, the VLC function is implemented, and all of the modules of the LED panel are fully reused. A data rate of 40 Mb/s is supported at a distance of up to 2 m while using the multi-band carrierless amplitude and phase (CAP) modulation. Two main limiting factors for achieving higher data rates are observed. The first factor is the limited bandwidth of the LED string inside the panel. The second is the flicker due to the residual ripple of the bias current that is generated by the panel’s driver. Flicker is introduced by the low-cost driver, which provides bias currents that fluctuate in the low frequency range (less than several kilohertz). This significantly reduces the transmitter’s modulation depth. Concurrently, the driver can also introduce an effect that is similar to baseline wander at the receiver if the flicker is not completely filtered out. We also proposed a solution based on digital signal processing (DSP) to mitigate the flicker issue at the receiver side and its effectiveness has been confirmed.


2021 ◽  
Vol 11 (9) ◽  
pp. 4035
Author(s):  
Jinsheon Kim ◽  
Jeungmo Kang ◽  
Woojin Jang

In the case of light-emitting diode (LED) seaport luminaires, they should be designed in consideration of glare, average illuminance, and overall uniformity. Although it is possible to implement light distribution through auxiliary devices such as reflectors, it means increasing the weight and size of the luminaire, which reduces the feasibility. Considering the special environment of seaport luminaires, which are installed at a height of 30 m or more, it is necessary to reduce the weight of the device, facilitate replacement, and secure a light source with a long life. In this paper, an optimized lens design was investigated to provide uniform light distribution to meet the requirement in the seaport lighting application. Four types of lens were designed and fabricated to verify the uniform light distribution requirement for the seaport lighting application. Using numerical analysis, we optimized the lens that provides the required minimum overall uniformity for the seaport lighting application. A theoretical analysis for the heatsink structure and shape were conducted to reduce the heat from the high-power LED light sources up to 250 W. As a result of these analyses on the heat dissipation characteristics of the high-power LED light source used in the LED seaport luminaire, the heatsink with hexagonal-shape fins shows the best heat dissipation effect. Finally, a prototype LED seaport luminaire with an optimized lens and heat sink was fabricated and tested in a real seaport environment. The light distribution characteristics of this prototype LED seaport luminaire were compared with a commercial high-pressure sodium luminaire and metal halide luminaire.


2021 ◽  
Vol 17 (1) ◽  
pp. 40-46
Author(s):  
Man-wei Wang ◽  
Fu-zhen Zhu ◽  
Yu-yang Bai

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 73330-73339 ◽  
Author(s):  
Jehoiada Jackson ◽  
She Kun ◽  
Kwame Obour Agyekum ◽  
Ariyo Oluwasanmi ◽  
Parinya Suwansrikham

Sign in / Sign up

Export Citation Format

Share Document