scholarly journals Identification and diversity of Fusarium species isolated from tomato fruits

2016 ◽  
Vol 56 (3) ◽  
pp. 231-236 ◽  
Author(s):  
Nur Baiti Abd Murad ◽  
Nor Azizah Kusai ◽  
Nur Ain Izzati Mohd Zainudin

Abstract Fruit rot of tomato is a serious disease caused by Fusarium species. Sampling was conducted throughout Selangor, Malaysia and fungal species identification was conducted based on morphological and gene encoding translation elongation factor 1-α (tef1-α) sequence analysis. Five species of Fusarium were discovered namely F. oxysporum (including F. oxysporum f. sp. lycopersici), F. solani, F. equiseti, F. proliferatum and F. verticillioides. Our results provide additional information regarding the diversity of Fusarium species associated with fruit rot disease of tomato.

Plant Disease ◽  
2022 ◽  
Author(s):  
Liu Yang ◽  
Tian Yuan ◽  
Xia Zhao ◽  
Yue Liang ◽  
UWAREMWE CONSTANTINE ◽  
...  

Root rot is a serious disease in plantations of A. sinensis, severely affecting yield and quality and threatening sustainable production. Fusarium isolates (n=32) were obtained from field samples of root rot tissue, leaves and infected soil. Isolates were identified by comparing the sequences of their internal transcribed spacer (ITS) region and translation elongation factor 1-ɑ (TEF-1ɑ) to sequences of known species in the NCBI-database. These Fusarium isolates include F. tricinctum (43.75%), F. equiseti (31.25%), F. solani (9.37%), F. oxysporum (6.25%), F. acuminatum (6.25%), and F. incarnatum (3.12%). For pathogenicity testing under greenhouse conditions, seven isolates were selected based on a phylogenetic analysis, including four strains of F. tricinctum and one strain each of F. solani, F. oxysporum, and F. acuminatum. The seven isolates were all pathogenic but differed in their ability to infect: the four F. tricinctum strains were capable pathogens causing root rot in A. sinensis at 100% incidence and the highly aggressive. Furthermore, the symptoms of root rot induced by those seven isolates were consistent with typical root rot cases in the field, but their disease severity varied. Observed histopathological preparations of F. tricinctum-infected seedlings and tissue-slides results showed this fungal species can penetrate epidermal cells and colonize the cortical cells where it induces necrosis and severe plasmolysis. Plate confrontation experiments showed that isolated rhizosphere bacteria inhibited the Fusarium pathogens that cause root rot in A. sinensis. Our results provide timely information for informing the use of biocontrol agents for suppression of root rot disease.


Phytotaxa ◽  
2019 ◽  
Vol 425 (5) ◽  
pp. 259-268
Author(s):  
XIAO-XIAO FENG ◽  
JIA-JIE CHEN ◽  
GUO-RONG WANG ◽  
TING-TING CAO ◽  
YONG-LI ZHENG ◽  
...  

During an exploration of plant pathogens in vegetables occuring in Zhejiang province, China, a novel fungal species, was found. Three strains ZJUP0033-4, ZJUP0038-3 and ZJUP0132 were isolated from black round lesions in the stems and leaves of Amaranthus sp. Phylogenetic analyses based on sequences from four genes including rDNA internal transcribed spacer (ITS), translation elongation factor 1-α (EF1-α), histone (HIS) and β-tubulin (TUB) indicated that D. sinensis clustered in a distinct clade closely related to D. neoarctii, D. angelicae, D. subordinaria, D. arctii, D. cuppatea, D. lusitanicae, D. novem, D. infecunda, D. ganjae and D. manihotia. Morphologically, D. sinensis is distinguished by brown, scattered, globose pycnidia and ellipsoid alpha conidia with bi- to multiguttulate.


Genetics ◽  
1995 ◽  
Vol 141 (2) ◽  
pp. 481-489 ◽  
Author(s):  
T G Kinzy ◽  
J L Woolford

Abstract Translation elongation factor 1beta (EF-1beta) catalyzes the exchange of bound GDP for GTP on EF-1alpha. The lethality of a null allele of the TEF5 gene encoding EF-1beta in Saccharomyces cerevisiae was suppressed by extra copies of the TEF2 gene encoding EF-1alpha. The strains with tef5::TRP1 suppressed by extra copies of TEF were slow growing, cold sensitive, hypersensitive to inhibitors of translation elongation and showed increased phenotypic suppression of +1 frameshift and UAG nonsense mutations. Nine dominant mutant alleles of TEF2 that cause increased suppression of frameshift mutations also suppressed the lethality of tef5::TRP1. Most of the strains in which tef5::TRP1 is suppressed by dominant mutant alleles of TEF2 grew more slowly and were more antibiotic sensitive than strains with tef5::TRP1 is suppressed by wild-type TEF2. Two alleles, TEF2-4 and TEF2-10, interact with tef5::TRP1 to produce strains that showed doubling times similar to tef5::TRP1 strains containing extra copies of wild-type TEF2. These strains were less cold sensitive, drug sensitive and correspondingly less efficient suppressor of +1 frameshift mutations. These phenotypes indicate that translation and cell growth are highly sensitive to changes in EF-1alpha and EF-1beta activity.


MycoKeys ◽  
2020 ◽  
Vol 73 ◽  
pp. 109-132
Author(s):  
Xin Gu ◽  
Rui Wang ◽  
Quan Sun ◽  
Bing Wu ◽  
Jing-Zu Sun

The Harzianum clade of Trichoderma comprises many species, which are associated with a wide variety of substrates. In this study, four new species of Trichoderma, namely T. lentinulae, T. vermifimicola, T. xixiacum, and T. zelobreve, were encountered from a fruiting body and compost of Lentinula, soil, and vermicompost. Their colony and mycelial morphology, including features of asexual states, were described. For each species, their DNA sequences were obtained from three loci, the internal transcribed spacer (ITS) regions of the ribosomal DNA, the gene encoding the second largest nuclear RNA polymerase subunit (RPB2), the translation elongation factor 1-α encoding gene (TEF1-α). The analysis combining sequences of the three gene regions distinguished four new species in the Harzianum clade of Trichoderma. Among them, T. lentinulae and T. xixiacum clustered with T. lixii, from which these new species differ in having shorter phialides and smaller conidia. Additionally, T. lentinulae differs from T. xixiacum in forming phialides with inequilateral to a strongly-curved apex, cultural characteristics, and slow growth on PDA. Trichoderma vermifimicola is closely related to T. simmonsii, but it differs from the latter by producing phialides in verticillate whorls and smaller conidia. Trichoderma zelobreve is the sister species of T. breve but is distinguished from T. breve by producing shorter and narrower phialides, smaller conidia, and by forming concentric zones on agar plates. This study updates our knowledge of species diversity of Trichoderma.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1308
Author(s):  
Rui Chen ◽  
Samantha C. Karunarathna ◽  
Chang-Lin Zhao

Poriella subacida gen. & comb. nov., previously known as Perenniporia subacida, which causes white rot, has been documented in temperate and tropical forests. Specimens from Asia, North America, and Europe were examined, including the type specimen of Polylorus subacidus. Sequences of the ITS1-5.8S-ITS2 region, the 28S rDNA, the mitochondrial rDNA small subunit (mtSSU), and the gene encoding the translation elongation factor 1-α (EF1) were generated. In multigene phylogenies (maximum parsimony, maximum likelihood, Bayesian inferences), “Perenniporia subacida” formed a well-supported lineage, distinct from the core “Perenniporia” clade (type species: “P. medulla-panis”), and sister to the “Yuchengia narymica” lineage. We therefore conclude that “P. subacida” should be placed in the new genus “Poriella”gen. nov. Morphologically, “Poriella” is characterized by a di- to trimitic hyphal system, non-truncate basidiospores, and strongly dextrinoid, cyanophilic skeletal hyphae.


MycoKeys ◽  
2018 ◽  
Vol 44 ◽  
pp. 63-80 ◽  
Author(s):  
Min Qiao ◽  
Xing Du ◽  
Zhe Zhang ◽  
JianPing Xu ◽  
ZenFen Yu

Fungi in the genus Trichoderma are widely distributed in China, including in Yunnan province. In this study, we report three new soil-inhabiting species in Trichoderma, named as T.kunmingense, T.speciosum and T.zeloharzianum. Their colony and mycelial morphology, including features of asexual states, were described. For each species, their DNA sequences were obtained from three loci, the internal transcribed spacer (ITS) regions of the ribosomal DNA, the translation elongation factor 1-α encoding gene (tef1) and the gene encoding the second largest nuclear RNA polymerase subunit (rpb2). Our analyses indicated that the three new species showed consistent divergence amongst each other and from other known and closely related species. Amongst the three, T.speciosum and T.kunmingense belong to the Viride Clade. Specifically, T.speciosum is related to three species – T.hispanicum, T.samuelsii and T.junci and is characterised by tree-like conidiophores, generally paired branches, curved terminal branches, spindly to fusiform phialides and subglobose to globose conidia. In contrast, T.kunmingense morphologically resembles T.asperellum and T.yunnanense and is distinguished by its pyramidal conidiophores, ampulliform to tapered phialides, discrete branches and ovoidal, occasionally ellipsoid, smooth-walled conidia. The third new species, T.zeloharzianum, is a new member of the Harzianum Clade and is closely associated with T.harzianum, T.lixii and T.simmonsii but distinguished from them by having smaller, subglobose to globose, thin-walled conidia.


2021 ◽  
Author(s):  
Debora Guterres ◽  
Roberto Ramos-Sobrinho ◽  
Danilo B. Pinho ◽  
Iraildes P. Assunção ◽  
Gaus S.A. Lima

Abstract Fungal species belonging to the genus Balansia (Clavicipitaceae) are well known as endophytic and epibiotic species commonly found on grasses or sedges. Among the 36 species of Balansia described worldwide, ten have been reported in Brazil. While most species of balansoid fungi were described on graminaceous plants, only four were characterized on cyperaceous hosts. To correctly identify the species of balansoid fungi associated with Scleria bracteata (Cyperaceae), specimens were collected in the state of Alagoas, Brazil, in 2014 and 2016. Nucleotide partial sequences of the second-largest subunit of RNA polymerase II (RPB2), translation elongation factor 1-α (TEF1), 18S subunit ribosomal DNA (SSU), 28S subunit ribosomal DNA (LSU), and internal transcribed spacers (ITS) were obtained from each balansoid specimen. Based on morphology and molecular data, the specimens were identified as a putative new species of Balansia, herein referred to as Balansia scleriae sp. nov.


Sign in / Sign up

Export Citation Format

Share Document