Application of the Handysurf E-35B electronic profilometer for the study of weathering micro-relief in glacier forelands in SE Iceland

2015 ◽  
Vol 65 (3) ◽  
pp. 389-401 ◽  
Author(s):  
Maciej Dąbski

AbstractThis article presents the results of weathering micro-roughness measurements performed with the use of a Handy-surf E-35B electronic profilometer, a new tool in geomorphological studies. Measurements were performed on glacially abraded basaltic surfaces within the Little Ice Age (LIA) glacial forelands of Hoffelsjökull, Fláajökull, Skálafellsjökull and Virkisjökull in Iceland. Results show a statistical increase in micro-roughness in a direction from the glacial termini to LIA moraines. However, a major change in the micro-roughness of basaltic surfaces only occurs during the first 80 to 100 years since the onset of subaerial weathering. Increase in rock surface micro-roughness is accompanied by an increase in weathering rind thickness and a decrease in Schmidt hammer R-values. Micro-roughness measurements with the use of the Handysurf E-35B can provide insights into initial rates of rock surface micro-relief development. The use of this instrument as a relative dating technique is limited to fine-grained rocks and decadal time-scales of weathering because of the limited range of measureable micro-relief amplitude.

2017 ◽  
Vol 21 (4) ◽  
pp. 190-196
Author(s):  
Jan Czempiński ◽  
Maciej Dąbski

AbstractThe aim of this article is to show the results of the lichenometrical and Schmidt hammer measurements performed in 2015 during the AMADEE-15 Mars Mission Simulation in the Ötztal Alps in order to test the capabilities of analogue astronauts and collect information on the geomorphic history of the study area since the Little Ice Age (LIA). The results obtained differ significantly from our expectations, which we attribute to differences in the field experience of participants and the astronauts’ technical limitations in terms of mobility. However, the experiments proved that these methods are within the range of the astronauts’ capabilities. Environmental factors, such as i) varied petrography, ii) varied number of thalli in test polygons, and iii) differences in topoclimatic conditions between the LIA moraine and the glacier front, further inhibited simple interpretation. The LIA maximum of the Kaunertal glacier occurred in AD 1850, and relative stabilization of the frontal part of the rock glacier occurred in AD 1711.


2014 ◽  
Vol 35 (1) ◽  
pp. 99-114 ◽  
Author(s):  
Maciej Dąbski

Abstract : Glacially abraded basaltic rock surfaces found within a Little Ice Age (LIA) fore− land of Skálafellsjökull (SE Iceland) were studied at eight sites of different age applying different weathering indices. They include surface micro−roughness parameters measured with the Handysurf E35−B electronic profilometer - a new tool in geomorphology, Schmidt hammer rebound (R−values) and weathering rind thickness. Values of these indices obtained from study sites exposed to subaerial weathering for more than ca. 80 years are significantly different than those from younger moraines closer to the glacier snout. Despite a wide scatter of readings within each study site, there is a significant correlation between the ages and the values of the indices. It is concluded that the micro−roughness parameters provided by the Handysurf E35−B profilometer, Schmidt hammer R−values and weathering rind thickness are robust indices of rock surface deterioration rate in short time−scales. There is mounting evidence that rock surface undergoes relatively rapid weathering during first decades since deglaciation.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 342
Author(s):  
Dmitrii A. Ganyushkin ◽  
Sofia N. Lessovaia ◽  
Dmitrii Y. Vlasov ◽  
Gennady P. Kopitsa ◽  
László Almásy ◽  
...  

For the Altai Mountains’ region, especially the arid southeastern part of the Russian Altai, the data on glacier fluctuations in the Pleistocene and Holocene are still inconsistent. The study area was the Kargy River’s valley (2288–2387 m a.s.l.), a location that is not currently affected by glaciation and the glacial history of which is poorly studied. Field observations and geomorphological mapping were used to reveal the configuration of Pleistocene moraines. The relative dating method was applied to define the degree of weathering as an indicator of age. Three moraine groups of different ages (presumably MIS 6, MIS 4, and MIS 2) were identified based on a detailed investigation of their morphological features and the use of relative dating approaches. The latter were primarily based on weathering patterns. Data on the rock mineralogy, porosity, and specificity of biological colonization as an agent of weathering were obtained for the moraine debris. The studied moraines were composed of fine-grained schist, in which the specific surface area and fractality (self-similarity) were more developed in the older moraine. The growth of biota (crustose lichen and micromycetes) colonizing the rock surface led to rock disintegration and the accumulation of autochthonous fragments on the rock surface. Despite the fact that the initial stage(s) of moraine weathering affected by biota was fixed, the correlation trends of biota activity and moraine ages were not determined.


2012 ◽  
Vol 78 (2) ◽  
pp. 197-208 ◽  
Author(s):  
Richard F. Madole

AbstractStratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450–1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.


The Holocene ◽  
2019 ◽  
Vol 29 (12) ◽  
pp. 1885-1905 ◽  
Author(s):  
Paul Weber ◽  
Clare M Boston ◽  
Harold Lovell ◽  
Liss M Andreassen

The maximum ‘Little Ice Age’ (LIA) glacier extent provides a significant baseline to assess long-term glacier change and to place currently observed rates of glacier recession in a broader temporal context. To that end, we examine the evolution of the plateau icefield Hardangerjøkulen since the LIA. First, we reconstruct Hardangerjøkulen’s maximum LIA extent (~AD 1750) and subsequent recession based on the glacial landform record and aided by historical map interpretation. Ice-marginal moraines, glacial drift limits, trimlines, and identifiable erosion and weathering boundaries provide evidence of a LIA icefield with an area of 110 km2. Existing LIA model simulations of Hardangerjøkulen are not yet fully able to reproduce our reconstructed extent. Second, we compile a set of remotely sensed icefield outlines from successive time points in the 20th and 21st century to calculate icefield area and length change since the LIA. This reveals a substantial reduction in icefield size, with a total area loss of 41 km2 (37%; 2% 10 a–1) by 2010 and a cumulative frontal retreat averaging 1.3 km (29%; 5 m a–1) by 2013. Icefield recession has been greatest since the end of the 20th century, when rates of areal shrinkage increased to 6.5–10% 10 a–1 in 1995–2010, and the rate of average terminus retreat accelerated to 17 m a–1 in 2003–2010. Third, we present a relative dating approach, based on the known age of the different icefield outlines, that allows bracketing ages to be assigned to all ice-marginal landforms between any two outlines. This approach shows that episodes of moraine formation vary temporally between individual outlet glaciers of Hardangerjøkulen, suggesting that the moraine record of a single outlet glacier alone may not be sufficient to derive an icefield-wide picture of past ice advances, and thereby climate fluctuations.


Author(s):  
Dmitrii A. Ganyushkin ◽  
Sofya N. Lesovaya ◽  
Dmitrii Y. Vlasov ◽  
Gennady P. Kopitsa ◽  
László Almásy ◽  
...  

For the Altai mountainous region, especially the arid south-eastern part, the history of glacier fluctuations in Pleistocene and Holocene is still poorly known. The key plots were located in the Kargy valley (2288-2387 m a. s. l.) that is not currently affected by glaciations. The relative dating method was applied to define Pleistocene moraine chronology and configuration in the Kargy valley. Taking into account that relative dating methods are primarily based on weathering pat-terns, the mineralogy, porosity, and specificity of biological colonization as an agent of weath-ering were obtained for the moraine samples. Three moraine groups of different age (presumably MIS 6, MIS 4, and MIS 2) were identifies based on detailed investigation of morphological features. The moraine age was indirectly confirmed by the mesostructure of the moraine samples repre-sented by fine-grained shale: the older sample is characterized by a more developed fractal sur-face than the younger one. The growth of biota (crustose lichen and micromycetes) leads to initial biomass accumulation and subsequent rock disintegration. The accumulation of autochthonous fine earth on the rock surface was considered the initial stage of fine earth formation affected by biota.


Author(s):  
W.P. De Lange

The Greenhouse Effect acts to slow the escape of infrared radiation to space, and hence warms the atmosphere. The oceans derive almost all of their thermal energy from the sun, and none from infrared radiation in the atmosphere. The thermal energy stored by the oceans is transported globally and released after a range of different time periods. The release of thermal energy from the oceans modifies the behaviour of atmospheric circulation, and hence varies climate. Based on ocean behaviour, New Zealand can expect weather patterns similar to those from 1890-1922 and another Little Ice Age may develop this century.


2013 ◽  
Vol 6 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Anastasia Gornostayeva ◽  
◽  
Dmitry Demezhko ◽  
◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document