scholarly journals Dynamic Characteristics of a Tall Building Identified from Earthquake and Ambient Vibration Records

2015 ◽  
Vol 11 (4) ◽  
pp. 1-9
Author(s):  
Cristian Andone ◽  
Sorin Demetriu ◽  
Alexandru Aldea

Abstract The paper presents the modal characteristics of a tall building in Bucharest (BRD-SG Tower) identified from earthquake and ambient vibration records. The building was built in the early 2000’s and has a reinforced concrete structure (inner shear wall tube and perimeter frames) with 3 underground stories, ground floor and 18 stories. The seismic instrumentation of the building consists of a seismic station with two triaxial acceleration sensors located at the top of the building (+69.6 m) and at the third basement (−9.3 m). The dynamic characteristics of the building are estimated from the seismic records from 23 earthquakes (with moment magnitudes MW between 3.7 and 6.0) that occurred during the period 2004÷2010. The results obtained from the earthquake records are compared with those obtained from 35 ambient vibration records from the period 2003 ÷ 2010.

2017 ◽  
Vol 25 (4) ◽  
pp. e2121 ◽  
Author(s):  
Feng-Liang Zhang ◽  
Carlos E. Ventura ◽  
Hai-Bei Xiong ◽  
Wen-Sheng Lu ◽  
Yu-Xin Pan ◽  
...  

2021 ◽  
Author(s):  
Özlem Çavdar

Abstract In this paper, the seismic behavior of existing reinforced concrete tall building is investigated by the linear and nonlinear dynamic analysis. The selected reinforced concrete structure was designed according to “Turkey Seismic Code-2007” (TEC-2007). A typical 41 story reinforced concrete building is designed. Turkey Building Earthquake Code-2018 (TBEC-2018) is utilized for evaluating the seismic performance of the selected building. Natural earthquake acceleration record selected and adjusted for compatibility with the adopted design spectrum, is used. A performance analysis according to the TBEC-2018 in a 41-story reinforced concrete shear wall-framed structure in Istanbul where active fault lines are located. The selected reinforced concrete shear wall unsymmetrical plan tall building is located in Istanbul, Turkey. The performance goals of the reinforced concrete shear wall structure are evaluated by applying procedures of the TBEC-2018 and nonlinear dynamic analysis. According to the Code, the reinforced concrete shear wall building is not expected to satisfy life safety performance levels under design earthquake.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jun Ma ◽  
Shinji Nakata ◽  
Akihito Yoshida ◽  
Yukio Tamura

Full-scale tests on a one-story steel frame structure with a typical precast cladding system using ambient and free vibration methods are described in detail. The cladding system is primarily composed of ALC (Autoclaved Lightweight Concrete) external wall cladding panels, gypsum plasterboard interior linings, and window glazing systems. Ten test cases including the bare steel frame and the steel frame with addition of different parts of the precast cladding system are prepared for detailed investigations. The amplitude-dependent dynamic characteristics of the test cases including natural frequencies and damping ratios determined from the tests are presented. The effects of the ALC external wall cladding panels, the gypsum plasterboard interior linings, and the window glazing systems on the stiffness and structural damping of the steel frame are discussed in detail. The effect of the precast cladding systems on the amplitude dependency of the dynamic characteristics and the tendencies of the dynamic parameters with respect to the structural response amplitude are investigated over a wide range. Furthermore, results estimated from the ambient vibration method are compared with those from the free vibration tests to evaluate the feasibility of the ambient vibration method.


2011 ◽  
Vol 12 ◽  
pp. 127-132
Author(s):  
Bowang Chen ◽  
Jianguo Tan ◽  
Yang Oyang

Author(s):  
Giovanna Cultrera ◽  
Cécile Cornou ◽  
Giuseppe Di Giulio ◽  
Pierre-Yves Bard

AbstractIn recent years, the permanent seismic networks worldwide have largely increased, raising the amount of earthquake signals and the applications using seismic records. Although characterization of the soil properties at recording stations has a large impact on hazard estimates, it has not been implemented so far in a standardized way for reaching high-level metadata. To address this issue, we built an online questionnaire for the identification of the indicators useful for a reliable site characterization at a seismic station. We analysed the answers of a large number of experts in different fields, which allowed us to rank 24 different indicators and to identify the most relevant ones: fundamental frequency (f0), shear-wave velocity profile (VS), time-averaged Vs over 30 m (VS30), depth of seismological and engineering bedrock (Hseis_bed and Heng_bed), surface geology and soil class. Moreover, the questionnaire proposed two additional indices in terms of cost and difficulty to obtain a reliable value of each indicator, showing that the selection of the most relevant indicators results from a complex balance between physical relevancy, average cost and reliability. For each indicator we propose a summary report, provided as editable pdf, containing the background information of data acquisition and processing details, with the aim to homogenize site metadata information at European level and to define the quality of the site characterization (see companion paper Di Giulio et al. 2021). The selected indicators and the summary reports have been shared within European and worldwide scientific community and discussed in a dedicated international workshop. They represent a first attempt to reach a homogeneous set of high-level metadata for site characterization.


1976 ◽  
Vol 66 (1) ◽  
pp. 125-151
Author(s):  
Firdaus E. Udwadia ◽  
Panos Z. Marmarelis

abstract This paper investigates the response of structural systems to strong earthquake ground shaking by utilizing some concepts of system identification. After setting up a suitable system model, the Weiner technique of nonparametric identification has been introduced and its experimental applicability studied. The sources of error have been looked into and several new results have been presented on accuracy calculations stemming from the various assumptions in the Wiener technique. The method has been applied in studying the response of a 9-story reinforced concrete structure to earthquake excitation as well as ambient vibration testing. The linear contribution to the total roof response during strong ground shaking has been identified, and it is shown that a marked nonlinear behavior is exhibited by the structure during the strong-motion portion of the excitation.


2019 ◽  
Vol 803 ◽  
pp. 314-321 ◽  
Author(s):  
Maryam Bypour ◽  
Benyamin Kioumarsi ◽  
Mahdi Kioumarsi

In this paper, the behavior of steel plate shear wall (SPSW) in the reinforced concrete frame (RCF) has been studied numerically. Three different connections have been proposed to connect SPSW to RCF. In the first connection, fish plates, while in the second one, combination of fish plates and studs transfer forces between SPSW and RCF. In the third connection, there is no direct connection between the infill plate and RCF, and additional steel frame has been used for connecting of the infill plate. The results demonstrate that, load carrying capacity increases in all the specimens comparing the reference RCF. Investigating the formation sequence of plastic hinges in different specimens demonstrates that there is different sequence in the specimens with different connections.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Halil Nohutcu

Historical structures are the values that are of great importance to that country, showing the roots of a country, and must be passed on from generation to generation. This study attempts to make a contribution to this goal. Seismic damage pattern estimation in a historical brick masonry minaret under different ground motion levels is investigated by using updated finite element models based on ambient vibration data in this study. Imaret Mosque which was built in 1481 AD is selected for an application. Surveying measurement and material tests were conducted to obtain a 3D solid model and mechanical properties of the components of the minaret. Firstly, the initial 3D finite element model of the minaret was analyzed and numerical dynamic characteristics of the minaret were obtained. Then, ambient vibration tests as well as operational modal analysis were implemented in order to obtain the experimental dynamic characteristics of the minaret. The initial finite element model of the minaret was updated by using the experimental dynamic results. Lastly, linear and nonlinear time-history analyses of the updated finite element model of the minaret were carried out using the acceleration records of two different level earthquakes that occurred in Turkey, in Afyon-Dinar (1995) and Çay-Sultandağı (2002). A concrete damage plasticity model is considered in the nonlinear analyses. The conducted analyses indicate that the compressive and tension stress results of the linear analyses are not as realistic as the nonlinear analysis results. According to the nonlinear analysis, the Çay-Sultandağı earthquake would inflict limited damage on the minaret, whereas the Dinar earthquake would damage some parts of the elements in the transition segment of the minaret.


Sign in / Sign up

Export Citation Format

Share Document