scholarly journals On the Extended Generalized Inverse Exponential Distribution with Its Applications

Author(s):  
Sule Ibrahim ◽  
Bello Olalekan Akanji ◽  
Lawal Hammed Olanrewaju

We propose a new distribution called the extended generalized inverse exponential distribution with four positive parameters, which extends the generalized inverse exponential distribution. We derive some mathematical properties of the proposed model including explicit expressions for the quantile function, moments, generating function, survival, hazard rate, reversed hazard rate and odd functions. The method of maximum likelihood is used to estimate the parameters of the distribution. We illustrate its potentiality with applications to two real data sets which show that the extended generalized inverse exponential model provides a better fit than other models considered.

Author(s):  
Bashiru Omeiza Sule

The quest by researchers in the area of distribution theory in proposing new models with greater flexibility has filled literature. On this note, we proposed a new distribution called the new extended generalized inverse exponential distribution with five positive parameters, which extends and generalizes the extended generalized inverse exponential distribution. We derive some mathematical properties of the proposed model including explicit expressions for the quantile function, moments, generating function, survival, hazard rate, reversed hazard rate, cumulative hazard rate function and odds functions. The method of maximum likelihood is used to estimate the parameters of the distribution. We illustrate its potentiality with applications to three real life data sets which show that the new extended generalized inverse exponential model provides greater flexibility and better fit than other competing models considered.


Filomat ◽  
2018 ◽  
Vol 32 (4) ◽  
pp. 1259-1272 ◽  
Author(s):  
Muhammad Zubair ◽  
Ayman Alzaatreh ◽  
Gauss Cordeiro ◽  
M.H. Tahir ◽  
Muhammad Mansoor

We introduce new generalized classes of exponential distribution, called T-exponential {Y} class using the quantile functions of well-known distributions. We derive some general mathematical properties of this class including explicit expressions for the quantile function, Shannon entropy, moments and mean deviations. Some generalized exponential families are investigated. The shapes of the models in these families can be symmetric, left-skewed, right-skewed and reversed-J, and the hazard rate can be increasing, decreasing, bathtub, upside-down bathtub, J and reverse-J shaped. Two real data sets are used to illustrate the applicability of the new models.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 474
Author(s):  
Abdulhakim A. Al-Babtain ◽  
Ibrahim Elbatal ◽  
Hazem Al-Mofleh ◽  
Ahmed M. Gemeay ◽  
Ahmed Z. Afify ◽  
...  

In this paper, we introduce a new flexible generator of continuous distributions called the transmuted Burr X-G (TBX-G) family to extend and increase the flexibility of the Burr X generator. The general statistical properties of the TBX-G family are calculated. One special sub-model, TBX-exponential distribution, is studied in detail. We discuss eight estimation approaches to estimating the TBX-exponential parameters, and numerical simulations are conducted to compare the suggested approaches based on partial and overall ranks. Based on our study, the Anderson–Darling estimators are recommended to estimate the TBX-exponential parameters. Using two skewed real data sets from the engineering sciences, we illustrate the importance and flexibility of the TBX-exponential model compared with other existing competing distributions.


2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Author(s):  
Uchenna U. Uwadi ◽  
Elebe E. Nwaezza

In this study, we proposed a new generalised transmuted inverse exponential distribution with three parameters and have transmuted inverse exponential and inverse exponential distributions as sub models. The hazard function of the distribution is nonmonotonic, unimodal and inverted bathtub shaped making it suitable for modelling lifetime data. We derived the moment, moment generating function, quantile function, maximum likelihood estimates of the parameters, Renyi entropy and order statistics of the distribution. A real life data set is used to illustrate the usefulness of the proposed model.     


Author(s):  
Salman Abbas ◽  
Gamze Ozal ◽  
Saman Hanif Shahbaz ◽  
Muhammad Qaiser Shahbaz

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone family of distributions. We have studied some statistical properties of the proposed distribution including quantile function, moment generating function, probability generating function, raw moments, incomplete moments, probability, weighted moments, Rayeni and q th entropy. The have obtained numerical values of the various measures to see the eect of model parameters. Distribution of of order statistics for the proposed model has also been obtained. The estimation of the model parameters has been done by using maximum likelihood method. The eectiveness of proposed model is analyzed by means of a real data sets. Finally, some concluding remarks are given.


Author(s):  
Zubair Ahmad ◽  
M. Elgarhy ◽  
G.G. Hamedani ◽  
Nadeem Shafique Butt

A new family of distributions called the odd generalized N-H is introduced and studied. Four new special models are presented. Some mathematical properties of the odd generalized N-H family are studied. Explicit expressions for the moments, probability weighted, quantile function, mean deviation, order statistics and Rényi entropy are investigated. Characterizations based on the truncated moments, hazard function and conditional expectations are presented for the generated family. Parameter estimates of the family are obtained based on maximum likelihood procedure. Two real data sets are employed to show the usefulness of the new family.


Author(s):  
Zafar Iqbal ◽  
Muhammad Rashad ◽  
Abdur Razaq ◽  
Muhammad Salman ◽  
Afsheen Javed

We introduce a new class of lifetime models called the transmuted powered moment exponential distribution. More specifically, the transmuted powered moment exponential distribution covers several new distributions. Survival analysis including survival function, hazard rate function and other related measures are computed. Analytical expressions for various mathematical properties of TPMED including rth moment, quantile function, inequality measures, and parameters are estimated by using maximum likelihood estimation and order statistics are also derived. A simulation study of the proposed distribution is performed. It is discovered that the Maximum Likelihood Estimators are consistent since the bias and Mean Square Error approach to zero when the sample size increases. The usefulness of the model associated with this distribution is illustrated by two real data sets and the new model provides a better fit than the models provided in literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-18
Author(s):  
Gauss M. Cordeiro ◽  
Rodrigo R. Pescim ◽  
Edwin M. M. Ortega ◽  
Clarice G. B. Demétrio

We study some mathematical properties of the beta generalized half-normal distribution recently proposed by Pescim et al. (2010). This model is quite flexible for analyzing positive real data since it contains as special models the half-normal, exponentiated half-normal, and generalized half-normal distributions. We provide a useful power series for the quantile function. Some new explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability, and entropy. We demonstrate that the density function of the beta generalized half-normal order statistics can be expressed as a mixture of generalized half-normal densities. We obtain two closed-form expressions for their moments and other statistical measures. The method of maximum likelihood is used to estimate the model parameters censored data. The beta generalized half-normal model is modified to cope with long-term survivors may be present in the data. The usefulness of this distribution is illustrated in the analysis of four real data sets.


Sign in / Sign up

Export Citation Format

Share Document