scholarly journals Anisotropic elastic properties of FexB (x = 1, 2, 3) under pressure. First-principles study

2016 ◽  
Vol 34 (3) ◽  
pp. 503-516 ◽  
Author(s):  
A. Gueddouh ◽  
B. Bentria ◽  
Y. Bourourou ◽  
S. Maabed

AbstractSpin-polarization (SP) and pressure effects have been used to better clarify and understand anisotropic elastic properties of Fe-B intermetallic compounds using the first-principles calculation with generalized gradient approximation (GGA) within the plane-wave pseudopotential density functional theory. Elastic properties, including bulk, shear and Young’s moduli as well as Poisson ratio were obtained by Voigt-Reuss-Hill approximation. All studied Fe-B compounds were mechanically stable. The brittle and ductile properties were discussed using bulk to shear moduli ratio (B/G) of the studied structures in the pressure range of 0 GPa to 90 GPa in order to predict the critical pressure of phase transition from ferromagnetic (FM) to nonmagnetic (NM) state. Mechanical anisotropy in both cases was discussed by calculating different anisotropic indexes and factors. We have plotted three-dimensional (3D) surfaces and planar contours of the bulk and Young’s moduli of FexB (x = 1, 2, 3) compounds for some crystallographic planes, (1 0 0), (0 1 0) and (0 0 1), to reveal their elastic anisotropy. On the basis of anisotropic elastic properties the easy and hard axes of magnetization for the three studied compounds were predicted.

2017 ◽  
Vol 31 (02) ◽  
pp. 1650263
Author(s):  
J. G. Yan ◽  
Z. J. Chen ◽  
G. B. Xu ◽  
Z. Kuang ◽  
T. H. Chen ◽  
...  

Using first-principles calculation we investigated the structural, electronic and elastic properties of paramagnetic CaFeAs2. Our results indicated that the density of states (DOS) was dominated predominantly by Fe-3[Formula: see text] states at Fermi levels, and stronger hybridization exists between As1 and As1 atoms. Three hole pockets are formed at [Formula: see text] and Z points, and two electronic pockets are formed at A and E points. The Dirac cone-like bands appear near B and D points. For the first time we calculated the elastic properties and found that CaFeAs2 is a mechanically stable and moderately hard material, it has elastic anisotropy and brittleness, which agrees well with the bonding picture and the calculation of Debye temperature ([Formula: see text]).


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2091 ◽  
Author(s):  
Tie Yang ◽  
Liyu Hao ◽  
Rabah Khenata ◽  
Xiaotian Wang

In this work, we systematically studied the structural, electronic, magnetic, mechanical and thermodynamic properties of the fully compensated spin-gapless inverse Heusler Ti2MnAl compound under pressure strain condition by applying the first-principles calculation based on density functional theory and the quasi-harmonic Debye model. The obtained structural, electronic and magnetic behaviors without pressure are well consistent with previous studies. It is found that the spin-gapless characteristic is destroyed at 20 GPa and then restored with further increase in pressure. While, the fully compensated ferromagnetism shows a better resistance against the pressure up to 30 GPa and then becomes to non-magnetism at higher pressure. Tetragonal distortion has also been investigated and it is found the spin-gapless property is only destroyed when c/a is less than 1 at 95% volume. Three independent elastic constants and various moduli have been calculated and they all show increasing tendency with pressure increase. Additionally, the pressure effects on the thermodynamic properties under different temperature have been studied, including the normalized volume, thermal expansion coefficient, heat capacity at constant volume, Grüneisen constant and Debye temperature. Overall, this theoretical study presents a detailed analysis of the physical properties’ variation under strain condition from different aspects on Ti2MnAl and, thus, can provide a helpful reference for the future work and even inspire some new studies and lead to some insight on the application of this material.


2019 ◽  
Vol 33 (18) ◽  
pp. 1950193
Author(s):  
Yingjiao Zhou ◽  
Qun Wei ◽  
Bing Wei ◽  
Ruike Yang ◽  
Ke Cheng ◽  
...  

The elastic constants and phonon dispersion of metallic C[Formula: see text] are calculated by first-principles calculations. The results show that the metallic C[Formula: see text] is mechanically and dynamically stable under high pressure. The variations of G/B ratio, Poisson’s ratio, elastic anisotropy, acoustic velocity and Debye temperature at the pressure range from 0 GPa to 100 GPa are analyzed. The results reveal that by adjusting the pressures the elastic anisotropy and thermodynamic properties could be improved for better applicability.


2019 ◽  
Vol 33 (05) ◽  
pp. 1950047
Author(s):  
Ruike Yang ◽  
Bao Chai ◽  
Qun Wei ◽  
Minhua Xue ◽  
Ye Zhou

For novel [Formula: see text]-Si3Sb4, pseudocubic-Si3Sb4, cubic-Si3Sb4 and [Formula: see text]-Si3Sb4, the structural, elastic and electronic properties are investigated using first-principles density functional theory (DFT). The elastic constants and phonon dispersion spectra show that they are mechanically and dynamically stable. The bulk moduli, shear moduli, Young’s moduli, Poisson’s ratios and Pugh ratios for the four compounds have been calculated. The bulk moduli indicate that the bond strength of [Formula: see text]-Si3Sb4 is stronger than others. The values of the Poisson’s ratios and Pugh ratios show that pseudocubic-Si3Sb4 is the stiffest among the four Si3Sb4 compounds. Tetragonal Si3Sb4 are more brittle than cubic Si3Sb4. For the four Si3Sb4 compounds, the elastic anisotropies are analyzed via the anisotropic indexes and the 3D surface constructions. The [Formula: see text]-Si3Sb4 elastic anisotropy is stronger than others and the [Formula: see text]-Si3Sb4 is weaker than others. The calculated band structures show that they exhibit metallic features. The results of their TDOS show that there are many similarities. The peaks of TDOS are derived from the contributions of Si “s”, Si “p”, Sb “s” and Sb “p” states.


2013 ◽  
Vol 821-822 ◽  
pp. 841-844 ◽  
Author(s):  
Xin Tan ◽  
Zhen Yang Xin ◽  
Xue Jie Liu ◽  
Qing Ge Mu

Structural and elastic properties of AlN are investigated by using First-principles. Both of wurtzite and zinc-blende structures are investigated, respectively. The bulk moduli of the wurtzite structure and zinc blende AlN are 194.2GPa and 187GPa, which obtained by the elastic stiffness constants respectively. Shear moduli are 136GPa and 124GPa. Young's moduli are 331GPa and 305GPa. Poisson's ratio and Pugh criterion suggests that both of them are brittle material. The brittleness of wurtzite AlN is higher than that of zinc-blende AlN. The elastic anisotropy of the bulk moduli and shear moduli were discussed. Three-dimensional anisotropic of the young's modulus were analyzed.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 865
Author(s):  
Rachid Stefan Touzani ◽  
Manja Krüger

The Molybdenum rich ternary alloys Mo-M-B (M = Zr, Hf) contain, next to the Mo solid solution (bcc Mo with small amounts of Zr or Hf as substitutional atoms), the binary borides Mo2B, MB and MB2. Recently, it was found that there is also ternary Mo2MB2, but the crystal structure and further properties are currently unknown. Density functional theory (DFT) calculations were used not only to predict the crystal structure of the Mo2MB2 phases, but also to estimate the isotropic and anisotropic elastic properties like bulk, shear and Young’s modulus, as well as the Vickers hardness of these new borides. Several known crystal structures that fulfill the criterion of the chemical composition were investigated, and the AlMn2B2 type structure seems to be the most stable crystal structure for Mo2HfB2 and Mo2ZrB2 as there are no signs of electronic or dynamic instability. Regarding the elastic properties, it was found that Mo2HfB2 shows higher elastic moduli and is less elastically anisotropic than Mo2ZrB2.


2012 ◽  
Vol 624 ◽  
pp. 122-126 ◽  
Author(s):  
Fan Jun Zeng ◽  
Qing Lin Xia

The electronic structure and elastic properties of Si doping Ti3Al1-xSixC2 (x=0-1) were studied by generalized gradient approximation (GGA) based on density functional theory (DFT) and virtual crystal approximation (VCA). The calculated lattice parameters and equilibrium volumes are in good agreement with the available experimental data. The density of state (DOS) shows that the DOS at the Fermi level (EF) is located at the bottom of a valley. Single-crystal elastic constants were calculated and the polycrystalline elastic modules were estimated according to Voigt, Reuss and Hill’s approximations (VRH). The results show that the bulk modules increase monotonously and the Poisson ratio v as well as BH and BG increase first and then decrease with the increasing of the doping Si. The Passion ratio v and BH/GH indicate that Ti3Al1-xSixC2 (x=0-1) are brittle compounds. Polycrystalline elastic anisotropy coefficients AB and AG were also derived and are very small.


2017 ◽  
Vol 31 (34) ◽  
pp. 1750326 ◽  
Author(s):  
Yefei Li ◽  
Liang Sun ◽  
Jiandong Xing ◽  
Shengqiang Ma ◽  
Qiaoling Zheng ◽  
...  

First-principles calculations based on density functional theory (DFT) were used to investigate the mechanical properties, elastic anisotropy, electronic structure, optical properties and thermodynamic properties of a new quaternary MAX phase (W[Formula: see text]Ti[Formula: see text])[Formula: see text]AlC[Formula: see text] and its counterpart W[Formula: see text]AlC[Formula: see text] under hydrostatic pressure. The results indicate that the volumetric shrinkage of (W[Formula: see text]Ti[Formula: see text])[Formula: see text]AlC[Formula: see text] is faster than that of axial shrinkage under hydrostatic pressure. The stress–strain method and Voigt–Reuss–Hill approximation were used to calculate elastic constants and moduli, respectively. These compounds are mechanically stable under hydrostatic pressure. Moreover, the moduli of (W[Formula: see text]Ti[Formula: see text])[Formula: see text]AlC[Formula: see text] and W[Formula: see text]AlC[Formula: see text] increase with an increase in pressure. The anisotropic indexes and surface constructions of bulk and Young’s moduli were used to illustrate the mechanical anisotropy under hydrostatic pressure. Electronic structure and optical property of (W[Formula: see text]Ti[Formula: see text])[Formula: see text]AlC[Formula: see text] and W[Formula: see text]AlC[Formula: see text] have also been discussed. The results of Debye temperature reveal that the covalent bonds among atoms in (W[Formula: see text]Ti[Formula: see text])[Formula: see text]AlC[Formula: see text] may be stronger than that of W3AlC[Formula: see text]. The heat capacity, [Formula: see text]–[Formula: see text], and thermal expansion coefficient of (W[Formula: see text]Ti[Formula: see text])[Formula: see text]AlC[Formula: see text] and W[Formula: see text]AlC[Formula: see text] were discussed in the ranges of 0–30 GPa and 0–2000 K using quasi-harmonic Debye model considering the phonon effects.


2019 ◽  
Vol 956 ◽  
pp. 46-54
Author(s):  
Jia Fu ◽  
Tian Hou ◽  
Jing Rui Chen

The influencing effect of pressure on structural stability and elastic properties of PbSe2 compound is mainly investigated by first-principles method and homogenization method of the Y parameter. The optimized structural parameters at zero pressure are a=b=6.446Å, c=7.887Å (GGA method) and a=b=6.316Å, c=7.651Å (LDA method), which has good agreement with the experimental and theoretical values. Our calculated lattice parameters and Se-Se bond length are in excellent agreement with experimental data. PbSe2 compound is energetically stable with a good alloying ability. The elastic constants are calculated, and then the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and anisotropy factor are determined. Besides, Y parameter method is used to investigate changes of the Poisson ratio, Young’s and shear moduli of PbSe2 within different normal orientation crystal planes. Results show that: 1) Young’s modulus is about 48.37 GPa from GGA and 58.87 GPa from LDA by Reuss-Voigt-Hill estimation, which is averaged about 53.62 GPa; 2) The PbSe2 compound is ductile according to B/G ratio. The universal anisotropic index AU shows that PbSe2 exhibits a fairly high elastic anisotropy.


Sign in / Sign up

Export Citation Format

Share Document