scholarly journals Tailoring the spatial localization of bound state in the continuum in plasmonic-dielectric hybrid system

Nanophotonics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Jin Xiang ◽  
Yi Xu ◽  
Jing-Dong Chen ◽  
Sheng Lan

AbstractBound states in the continuum (BIC) are considered as an effective means to dramatically elongate the trapping time of light. However, light-matter interaction depends not only on the life-time of an optical mode, but also on its mode volume. Therefore, increasing the life-time of an optical mode and minimizing the mode volume simultaneously, utilizing the BIC resembles a promising way for enhancing light-matter interaction. Herein, we have proposed a novel hybrid plasmonic-dielectric structure to manipulate the mode volume of BIC. For the Friedrich-Wintgen BIC, the electric field is strongly confined in the dielectric nanoparticle, leading to the considerable field enhancement compared with the single dielectric nanoparticle case. In contrast, strong localization of electric field can be achieved along the surface normal direction for the symmetry-protected BIC, leading to one order of magnitude reduction of mode volume in one unit cell compared with the conventional symmetry-protected BIC of all-dielectric structure. The proposed hybrid photonic system could provide an ideal flat platform for advanced manipulation of light-matter interaction.

2021 ◽  
Vol 9 ◽  
Author(s):  
Tingling Lin ◽  
Yi Huang ◽  
Shuncong Zhong ◽  
Manting Luo ◽  
Yujie Zhong ◽  
...  

A broad range of terahertz (THz) metamaterials have been developed for refractive index sensing. However, most of these metamaterials barely make sufficient use of the excited electric field which is crucial to achieve high sensitivity. Here, we proposed a metamaterial sensor possessing electromagnetically induced transparency (EIT) resonance that is formed by the interference of dipole and quadrupole resonance. In particular, the strengthening of light-matter interaction is realized through substrate etching, leading to a remarkable improvement in sensitivity. Hence, three kinds of etching mode were presented to maximize the utilization of the electric field, and the corresponding highest sensitivity is enhanced by up to ~2.2-fold, from 0.260 to 0.826 THz/RIU. The proposed idea to etch substrate with a strong light-matter interaction can be extended to other metamaterial sensors and possesses potential applications in integrating metamaterial and microfluid for biosensing.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yehonatan Gelkop ◽  
Fabrizio Di Mei ◽  
Sagi Frishman ◽  
Yehudit Garcia ◽  
Ludovica Falsi ◽  
...  

AbstractA hyperbolic medium will transfer super-resolved optical waveforms with no distortion, support negative refraction, superlensing, and harbor nontrivial topological photonic phases. Evidence of hyperbolic effects is found in periodic and resonant systems for weakly diffracting beams, in metasurfaces, and even naturally in layered systems. At present, an actual hyperbolic propagation requires the use of metamaterials, a solution that is accompanied by constraints on wavelength, geometry, and considerable losses. We show how nonlinearity can transform a bulk KTN perovskite into a broadband 3D hyperbolic substance for visible light, manifesting negative refraction and superlensing at room-temperature. The phenomenon is a consequence of giant electro-optic response to the electric field generated by the thermal diffusion of photogenerated charges. Results open new scenarios in the exploration of enhanced light-matter interaction and in the design of broadband photonic devices.


ACS Nano ◽  
2019 ◽  
Vol 13 (10) ◽  
pp. 11770-11780 ◽  
Author(s):  
S. R. K. Chaitanya Indukuri ◽  
Jonathan Bar-David ◽  
Noa Mazurski ◽  
Uriel Levy

Nanophotonics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 267-276 ◽  
Author(s):  
Rebecca Heilmann ◽  
Aaro I. Väkeväinen ◽  
Jani-Petri Martikainen ◽  
Päivi Törmä

AbstractPlasmonic structures interacting with light provide electromagnetic resonances that result in a high degree of local field confinement, enabling the enhancement of light-matter interaction. Plasmonic structures typically consist of metals, which, however, suffer from very high ohmic losses and heating. High-index dielectrics, meanwhile, can serve as an alternative material due to their low-dissipative nature and strong scattering abilities. We studied the optical properties of a system composed of all-dielectric nanoparticle arrays covered with a film of organic dye molecules (IR-792) and compared these dielectric arrays with metallic nanoparticle arrays. We tuned the light-matter interaction by changing the concentration in the dye film and reported the system to be in the strong coupling regime. We observed a Rabi splitting between the surface lattice resonances of the nanoparticle arrays and the absorption line of the dye molecules of up to 253 and 293 meV, for the dielectric and metallic nanoparticles, respectively. The Rabi splitting depends linearly on the square root of the dye molecule concentration, and we further assessed how the Rabi splitting depends on the film thickness for a low dye molecule concentration. For thinner films of thicknesses up to 260 nm, we observed no visible Rabi splitting. However, a Rabi splitting evolved at thicknesses from 540 to 990 nm. We performed finite-difference time-domain simulations to analyze the near-field enhancements for the dielectric and metallic nanoparticle arrays. The electric fields were enhanced by a factor of 1200 and 400, close to the particles for gold and amorphous silicon, respectively, and the modes extended over half a micron around the particles for both materials.


Nano Letters ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 6455-6460 ◽  
Author(s):  
Biswanath Chakraborty ◽  
Jie Gu ◽  
Zheng Sun ◽  
Mandeep Khatoniar ◽  
Rezlind Bushati ◽  
...  

Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this chapter we study with the tools developed in Chapter 3 the basic models that are the foundations of light–matter interaction. We start with Rabi dynamics, then consider the optical Bloch equations that add phenomenologically the lifetime of the populations. As decay and pumping are often important, we cover the Lindblad form, a correct, simple and powerful way to describe various dissipation mechanisms. Then we go to a full quantum picture, quantizing also the optical field. We first investigate the simpler coupling of bosons and then culminate with the Jaynes–Cummings model and its solution to the quantum interaction of a two-level system with a cavity mode. Finally, we investigate a broader family of models where the material excitation operators differ from the ideal limits of a Bose and a Fermi field.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 975-982
Author(s):  
Huanhuan Su ◽  
Shan Wu ◽  
Yuhan Yang ◽  
Qing Leng ◽  
Lei Huang ◽  
...  

AbstractPlasmonic nanostructures have garnered tremendous interest in enhanced light–matter interaction because of their unique capability of extreme field confinement in nanoscale, especially beneficial for boosting the photoluminescence (PL) signals of weak light–matter interaction materials such as transition metal dichalcogenides atomic crystals. Here we report the surface plasmon polariton (SPP)-assisted PL enhancement of MoS2 monolayer via a suspended periodic metallic (SPM) structure. Without involving metallic nanoparticle–based plasmonic geometries, the SPM structure can enable more than two orders of magnitude PL enhancement. Systematic analysis unravels the underlying physics of the pronounced enhancement to two primary plasmonic effects: concentrated local field of SPP enabled excitation rate increment (45.2) as well as the quantum yield amplification (5.4 times) by the SPM nanostructure, overwhelming most of the nanoparticle-based geometries reported thus far. Our results provide a powerful way to boost two-dimensional exciton emission by plasmonic effects which may shed light on the on-chip photonic integration of 2D materials.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Yannick Minet ◽  
Hans Zappe ◽  
Ingo Breunig ◽  
Karsten Buse

Whispering gallery resonators made out of lithium niobate allow for optical parametric oscillation and frequency comb generation employing the outstanding second-order nonlinear-optical properties of this material. An important knob to tune and control these processes is, e.g., the linear electro-optic effect, the Pockels effect via externally applied electric fields. Due to the shape of the resonators a precise prediction of the electric field strength that affects the optical mode is non-trivial. Here, we study the average strength of the electric field in z-direction in the region of the optical mode for different configurations and geometries of lithium niobate whispering gallery resonators with the help of the finite element method. We find that in some configurations almost 100% is present in the cavity compared to the ideal case of a cylindrical resonator. Even in the case of a few-mode resonator with a very thin rim we find a strength of 90%. Our results give useful design considerations for future arrangements that may benefit from the strong electro-optic effect in bulk whispering gallery resonators made out of lithium niobate.


2021 ◽  
Author(s):  
Xiaomin Zhao ◽  
Chenglin Du ◽  
Rong Leng ◽  
Li Li ◽  
Weiwei Luo ◽  
...  

Plasmon resonances with high-quality are of great importance in light emission control and light-matter interaction. Nevertheless, the inherent Ohmic and radiative losses usually hinder the plasmon performance of the metallic...


Sign in / Sign up

Export Citation Format

Share Document