scholarly journals Strong spin squeezing induced by weak squeezing of light inside a cavity

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4853-4868
Author(s):  
Wei Qin ◽  
Ye-Hong Chen ◽  
Xin Wang ◽  
Adam Miranowicz ◽  
Franco Nori

AbstractWe propose a simple method for generating spin squeezing of atomic ensembles in a Floquet cavity subject to a weak, detuned two-photon driving. We demonstrate that the weak squeezing of light inside the cavity can, counterintuitively, induce strong spin squeezing. This is achieved by exploiting the anti-Stokes scattering process of a photon pair interacting with an atom. Specifically, one photon of the photon pair is scattered into the cavity resonance by absorbing partially the energy of the other photon whose remaining energy excites the atom. The scattering, combined with a Floquet sideband, provides an alternative mechanism to implement Heisenberg-limited spin squeezing. Our proposal does not need multiple classical and cavity-photon drivings applied to atoms in ensembles, and therefore its experimental feasibility is greatly improved compared to other cavity-based schemes. As an example, we demonstrate a possible implementation with a superconducting resonator coupled to a nitrogen-vacancy electronic-spin ensemble.

2021 ◽  
Vol 93 (12) ◽  
pp. 5234-5240
Author(s):  
Tomoko Takahashi ◽  
Krzysztof Pawel Herdzik ◽  
Konstantinos Nikolaos Bourdakos ◽  
James Arthur Read ◽  
Sumeet Mahajan

Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1341-1358
Author(s):  
Jialin Ma ◽  
Mengtao Sun

AbstractIn this review, we focus on the summary of nonlinear optical microscopies (NOMs), which are stimulated Raman scattering (SRS), coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and two-photon excited fluorescence (TPEF). The introduction is divided into two parts: the principle of SRS, CARS, TPEF, and SHG and their application to biology and two-dimensional materials. We also introduce the connections and differences between them. We also discuss the principle of plasmon-enhanced NOM and its application in the above two aspects. This paper not only summarizes the research progress in the frontier but also deepens the readers’ understanding of the physical principles of these NOMs.


2001 ◽  
Vol 10 (01) ◽  
pp. 65-77 ◽  
Author(s):  
OU FA ◽  
HE MINGGAO ◽  
WU FUGEN

A new model to describe the origin of optical nonlinearity is presented. In this model, the interaction between light and medium is reduced to the coupling of photons with phonons, which occurs in the crystal lattice vibrating anharmonically. Then the optical nonlinearity originates from the nonlinear photon–phonon coupling or the interaction among phonons themselves. In this paper, more attention is drawn to the latter. By the given model, (1) degenerate and (2) nondegenerate parametric oscillations, (3) Stokes and (4) anti-Stokes Raman scattering, (5) sum-frequency and (6) second harmonic generation and (7) two-photon absorption are dealt with systematically and quantum-mechanically. The results of theoretical analysis show that the effects (1)–(4) are associated with threshold phenomenon, whereas the effects (5)–(7) with the saturation phenomenon.


1971 ◽  
Vol 26 (10) ◽  
pp. 1639-1643
Author(s):  
S. Hess ◽  
H. F. P. Knaap

Abstract Due to the coupling between the rotational angular momentum and the electronic spin, the depolarized Rayleigh light scattered from gaseous oxygen shows Stokes and anti-Stokes satellites shifted by about 60 GHz. The broadening of these fine-structure Raman lines is investigated theoretically for high and medium pressures where the linewidth is determined by two contributions, one proportional and the other inversely proportional to the pressure, p. The linewidth in the pressure broadening region is given by a relaxation frequency which is obtained from the Waldmann-Snider collision term. The p-1 contribution to the linewidth is determined by the ratio of the second moment of the fine-structure freqencies (with respect to the center of the shifted line) and another relaxation frequency. Both relaxation frequencies are sensitive to the nonspherical part of the inter-molecular potential.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Emily A. Gibson ◽  
Omid Masihzadeh ◽  
Tim C. Lei ◽  
David A. Ammar ◽  
Malik Y. Kahook

We review multiphoton microscopy (MPM) including two-photon autofluorescence (2PAF), second harmonic generation (SHG), third harmonic generation (THG), fluorescence lifetime (FLIM), and coherent anti-Stokes Raman Scattering (CARS) with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.


2015 ◽  
Vol 15 (15&16) ◽  
pp. 1397-1419
Author(s):  
Ming-Xing Luo ◽  
Hui-Ran Li

Teleportations of quantum gates are very important in the construction of quantum network and teleportation-based model of quantum computation. Assisted with nitrogenvacancy centers, we propose several schemes to teleport the quantum CNOT gate. Deterministic CNOT gate may be implemented on a remote two-photon system, remote two electron-spin system, hybrid photon-spin system or hybrid spin-photon system. Each photon only interacts with one spin each time. Moreover, quantum channel may be constructed by all combinations of the photon or electron-spin entanglement, or their hybrid entanglement. Since these electron-spin systems have experimentally shown a long coherence time even at the room temperature, our schemes provide useful ways for long-distance quantum applications.


Nanophotonics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 487-493 ◽  
Author(s):  
Xiaohu Mi ◽  
Yuyang Wang ◽  
Rui Li ◽  
Mengtao Sun ◽  
Zhenglong Zhang ◽  
...  

AbstractThe nonlinear optical microscopies of coherent two-photon excited fluorescence and anti-Stokes Raman scattering are strongly enhanced by multiple surface plasmon resonances (MSPRs). The Au@Ag nanorods presented strong MSPRs peaks at 800 and 400 nm, and can enhance nonlinear optical microscopy at fundamental and double frequencies, respectively. A two-dimensional (2D) material of g-C3N4 is employed to study the plasmon-enhanced nonlinear optical microscopy by the femtosecond laser. The electric analysis reveals that the MSPRs of the Au@Ag nanorod can significantly enhance the signals of two-photon excited fluorescence and anti-Stokes Raman scattering by up to the orders of 104 and 1016, respectively. The results demonstrate the great advantages of plasmon-enhanced nonlinear optical microscopy for the optical analysis on 2D materials, thus providing a new adventure for increasing the optical resolutions of nonlinear optical microscopy.


Sign in / Sign up

Export Citation Format

Share Document