scholarly journals Morphology adjustable microlens array fabricated by single spatially modulated femtosecond pulse

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Yang Liu ◽  
Xiaowei Li ◽  
Zhipeng Wang ◽  
Bin Qin ◽  
Shipeng Zhou ◽  
...  

Abstract Silica microlens arrays (MLAs) with multiple numerical-apertures (NAs) have high thermal and mechanical stability, and have potential application prospects in 3D display and rapid detection. However, it is still a challenge to rapidly fabricate silica MLAs with a larger range of NAs and how to obtain multiple NAs in the same aperture diameter. Here, a wet etching assisted spatially modulated femtosecond laser pulse fabricating technology is proposed. In this technology, Gaussian laser pulse is modulated in the axial direction to create a pulse with a large aspect ratio, which is used to modify the silica to obtain a longer modification distance than traditional technology. After that, a microlens with a larger NA can be obtained by etching, and the NA variable range can be up to 0.06–0.65, and even under the same aperture, the variable NA can range up to 0.45–0.65. In addition, a single focus is radially modulated into several focus with different axial lengths to achieve a single exposure fabricating of MLA with multiple NAs. In characterization of the image under a microscope, the multi-plane imaging characteristics of the MLA are revealed. The proposed technology offers great potential toward numerous applications, including microfluidic adaptive imaging and biomedical sensing.

2021 ◽  
Vol 11 (12) ◽  
pp. 5424
Author(s):  
Itamar Cohen ◽  
Yonatan Gershuni ◽  
Michal Elkind ◽  
Guy Azouz ◽  
Assaf Levanon ◽  
...  

The versatility of laser accelerators in generating particle beams of various types is often promoted as a key applicative advantage. These multiple types of particles, however, are generated on vastly different irradiation setups, so that switching from one type to another involves substantial mechanical changes. In this letter, we report on a laser-based accelerator that generates beams of either multi-MeV electrons or ions from the same thin-foil irradiation setup. Switching from generation of ions to electrons is achieved by introducing an auxiliary laser pulse, which pre-explodes the foil tens of ns before irradiation by the main pulse. We present an experimental characterization of the emitted beams in terms of energy, charge, divergence, and repeatability, and conclude with several examples of prospective applications for industry and research.


2018 ◽  
Author(s):  
Bertrand Aubert ◽  
David Hebert ◽  
Jean-Luc Rullier ◽  
Emilien Lescoute ◽  
Laurent Videau ◽  
...  

2011 ◽  
Vol 104 (1) ◽  
pp. 81-86 ◽  
Author(s):  
IJ. Kim ◽  
I. W. Choi ◽  
S. K. Lee ◽  
K. A. Janulewicz ◽  
J. H. Sung ◽  
...  

2002 ◽  
Vol os-11 (1) ◽  
pp. 1558925002OS-01
Author(s):  
Han Seong Kim ◽  
Behnam Pourdeyhimi

Interferometry provides a non-destructive method for examining the refractive index profile or the radial birefringence distribution within fibers. The key step in the interference data reduction involves the extraction of the refractive index profile along the axial direction of the fiber. The profile is due to the path difference between the fiber and the immersion liquid when a fiber is oriented perpendicular to the fringe field in an interference microscope. The refractive index provides a measure of the degree of optical anisotropy and is indicative of the degree of orientation of the structure. This is of particular interest to nonwovens because in thermally bonded nonwovens, the orientation plays a major role in how well the fibers are bonded and the ultimate properties of the fabric. Despite its long history, however, the interpretation of the interference fringe shift is not precisely defined. Consequently, the data are not reproducible from one laboratory to the next. We outline below an objective and quantitative method for precisely measuring a fiber's refractive index profile from a digitized image of the interference fringe. This new algorithm uses the Fast Fourier Transform (FFT) to remove the inherent noise present in the fiber interferogram and to aid in extracting the profile.


2019 ◽  
Vol 126 (24) ◽  
pp. 243304 ◽  
Author(s):  
Kohei Shimamura ◽  
Ippei Yokota ◽  
Shigeru Yokota

2005 ◽  
Vol 872 ◽  
Author(s):  
Peter Lange ◽  
Birger Ohlsen ◽  
Sebastian Puls ◽  
Joerg Syre

AbstractThe effects of temperature on micro heaters made of Ti/TiN stacks and pure TiN layers on bulk micromachined membranes have been studied. Ti/TiN stacks show a thermal stability up to 380°C, beyond that temperature an enhanced interaction within the stack and/or with adjacend layers leads to a degradation of the resistance. The pure TiN layers withstand temperatures up to 600 °C, this limitation is only given by the mechanical stability of the membran stack, which is destroyed beyond this temperature. These layers are suitable for sensors in which an elevated temperature provided by heating lines on a membran for thermal isolation and fast response is necessary for functionality.


2015 ◽  
Vol 6 ◽  
pp. 1558-1567 ◽  
Author(s):  
Riccardo Frisenda ◽  
Simge Tarkuç ◽  
Elena Galán ◽  
Mickael L Perrin ◽  
Rienk Eelkema ◽  
...  

We report on an experimental investigation of transport through single molecules, trapped between two gold nano-electrodes fabricated with the mechanically controlled break junction (MCBJ) technique. The four molecules studied share the same core structure, namely oligo(phenylene ethynylene) (OPE3), while having different aurophilic anchoring groups: thiol (SAc), methyl sulfide (SMe), pyridyl (Py) and amine (NH2). The focus of this paper is on the combined characterization of the electrical and mechanical properties determined by the anchoring groups. From conductance histograms we find that thiol anchored molecules provide the highest conductance; a single-level model fit to current–voltage characteristics suggests that SAc groups exhibit a higher electronic coupling to the electrodes, together with better level alignment than the other three groups. An analysis of the mechanical stability, recording the lifetime in a self-breaking method, shows that Py and SAc yield the most stable junctions while SMe form short-lived junctions. Density functional theory combined with non-equlibrium Green’s function calculations help in elucidating the experimental findings.


Author(s):  
D. Grosenick ◽  
H. Wabnitz ◽  
H. Rinneberg ◽  
K. T. Moesta ◽  
P. Schlag
Keyword(s):  

2015 ◽  
Vol 14 (05n06) ◽  
pp. 1550016
Author(s):  
Omar G. Morales-Saavedra ◽  
Rodolfo Zanella

Bulk SiO 2-based inorganic–inorganic sonogel (SG) hybrid glasses were fabricated with Ag / SiO 2 supported metal nanoparticles (MNPs). The catalyst-free SG route was implemented to produce these optically active nanostructured composites by doping the liquid sol-phase with Ag / SiO 2 synthesized according to the deposition–precipitation method. As prepared Ag / SiO 2-MNPs exhibited particle diameters below 10 nm and homogeneous size distribution. The easy and homogeneous Ag / SiO 2 loading within the micro/mesoporous SiO 2-SG network has evidenced the guest–host chemical affinity of these systems. This fact allowed us to fabricate outstanding chemically, photo-physically and mechanically stable bulk hybrid monoliths with controllable geometry and doping rates, suitable for linear and nonlinear optical (NLO)–spectroscopic characterizations. Indeed, the hosting SG matrix provided an elevated thermal and mechanical stability protecting the reactive Ag nanoparticles from environment conditions, diminishing their tendency to from aggregates and, above all, preserving their pristine photophysical properties. Comprehensive morphological, structural, spectroscopic and NLO characterizations were performed on the obtained SiO 2:( Ag / SiO 2) hybrid composites. Results have shown that the nanocrystalline (NC) properties, multipolar nature and small sizes of the implemented Ag / SiO 2-nanoparticles, together with the bulk guest–host mechanical interactions, play a crucial role for the observation of outstanding spectroscopic and quadratic NLO properties of the developed hybrid systems.


2006 ◽  
Vol 51 ◽  
pp. 30-37
Author(s):  
Lennox E. Iton ◽  
Anthony J. Crisci ◽  
Veronika Vajdova ◽  
Philippe D. Laible ◽  
Christopher T. Burns ◽  
...  

Interfacing of biomolecules to inorganic frameworks is essential for fabricating robust, functionally integrated biocomposites that may prove useful in a wide range of technologies including biocatalysis, biosensors or protein-based devices. Our work is directed at developing means to integrate biomolecules into mesostructured inorganics. These frameworks serve to both improve the mechanical stability of the proteins and to facilitate communication with them. Toward that end, we have synthesized and characterized mesoporous silicas and conductive metallic frameworks and have examined the encapsulation of both soluble (cytochrome c) and membrane proteins (bacteriorhodpsin) within them.


Sign in / Sign up

Export Citation Format

Share Document