Analyzing synaptic plasticity at the single cell level with STDP

Neuroforum ◽  
2018 ◽  
Vol 24 (3) ◽  
pp. A143-A150
Author(s):  
Elke Edelmann ◽  
Volkmar Leßmann

Abstract Using patch clamp recordings in acutely isolated brain slices allows to investigate molecular processes that are involved in long-term potentiation (LTP) and long-term depression (LTD) at the level of a single postsynaptic neuron. Via the pipette solution in the recording pipette, it is possible to apply inhibitors of signaling cascades selectively into the postsynaptic neuron to unravel the molecular mechanisms of synaptic plasticity. In recent years, LTP research has been increasingly focused on induction protocols for LTP and LTD that rely on a minimal number of repeated synaptic stimulations at low frequency to induce synaptic plasticity. This is where spike timing-dependent plasticity (STDP) comes into play. STDP can be induced by repetitive pairings of action potential firing in presynaptic (first neuron) – and postsynaptic (second synaptically connected) neurons, that occurs with a delay of roughly 5–20 ms in forward or backward manner. While forward pairing with short positive time delays (“pre before post”) leads to LTP, backward pairing (“post before pre”) leads to LTD. In addition to the exact sequence and timing of pre- and postsynaptic spiking, the presence of neuromodulatory transmitters in the extracellular space (e. g., dopamine, acetylcholine, noradrenaline) and the synaptic release of intercellular mediators of synaptic plasticity (e. g., BDNF, endocannabinoids) critically regulate the outcome of STDP protocols. In this review we focus on the role of these mediators and modulators of synaptic plasticity in STDP.

2019 ◽  
Author(s):  
Efrain A. Cepeda-Prado ◽  
Babak Khodaie ◽  
Gloria D. Quiceno ◽  
Swantje Beythien ◽  
Volkmar Leßmann ◽  
...  

AbstractActivity-dependent synaptic plasticity in neuronal circuits represents a cellular model of memory formation. Such changes can be elicited by repeated high-frequency stimulation inducing long-term potentiation (LTP), or by low frequency stimulation induced long-term depression (LTD). Spike timing-dependent plasticity (STDP) can induce equally robust long-lasting timing-dependent LTP (t-LTP) in response to low frequency repeats of coincident action potential (AP) firing in presynaptic cells followed by postsynaptic neurons. Conversely, this stimulation can lead to t-LTD if the postsynaptic spike precedes the presynaptic action potential. STDP is best suited to investigate synaptic plasticity mechanisms at the single cell level. Commonly, STDP paradigms relying on 25-100 repeats of coincident pre- and postsynaptic firing are used to elicit t-LTP or t-LTD. However, the minimum number of repeats required for successful STDP induction, which could account for fast single trial learning in vivo, is barely explored. Here, we examined low repeat STDP at Schaffer collateral-CA1 synapses by pairing one presynaptic AP with either one postsynaptic AP (1:1 t-LTP) or a burst of 4 APs (1:4 t-LTP). We found 3-6 repeats to be sufficient to elicit t-LTP. Postsynaptic Ca2+ elevation for 1:1 t-LTP required NMDARs and L-type VGCCs, while 1:4 t-LTP depended on metabotropic GluR and ryanodine receptor signaling. Surprisingly, both 6x t-LTP variants were strictly dependent on activation of postsynaptic Ca2+-permeable AMPARs. Both t-LTP forms were regulated differentially by dopamine receptors, but occurred independent from BDNF/TrkB signaling. Our data show that synaptic changes induced by only 3-6 repeats of mild STDP stimulation occuring in ≤10 s can take place on time scales observed also during single trial learning.


2019 ◽  
Author(s):  
Mason L. Yeh ◽  
Jessica R. Yasko ◽  
Eric S. Levine ◽  
Betty A. Eipper ◽  
Richard E. Mains

AbstractKalirin-7 (Kal7) is a Rac1/RhoG GEF and multidomain scaffold localized to the postsynaptic density which plays an important role in synaptic plasticity. Behavioral and physiological phenotypes observed in the Kal7 knockout mouse are quite specific: genetics of breeding, growth, strength and coordination are normal; Kal7 knockout animals self-administer cocaine far more than normal mice, show exaggerated locomotor responses to cocaine, but lack changes in dendritic spine morphology seen in wildtype mice; Kal7 knockout mice have depressed surface expression of GluN2B receptor subunits and exhibit marked suppression of long-term potentiation and depression in hippocampus, cerebral cortex, and spinal cord; and Kal7 knockout mice have dramatically blunted perception of pain. To address the underlying cellular and molecular mechanisms which are deranged by loss of Kal7, we administered intracellular blocking peptides to acutely change Kal7 function at the synapse, to determine if plasticity deficits in Kal7-/-mice are the product of developmental processes since conception, or could be detected on a much shorter time scale. We found that specific disruption of the interactions of Kal7 with PSD-95 or GluN2B resulted in significant suppression of long-term potentiation and long-term depression. Biochemical approaches indicated that Kal7 interacted with PSD-95 at multiple sites within Kal7.Graphical Table of ContentsThe postsynaptic density is an integral player in receiving, interpreting and storing signals transmitted by presynaptic terminals. The correct molecular composition is crucial for successful expression of synaptic plasticity. Key components of the postsynaptic density include ligand-gated ion channels, structural and binding proteins, and multidomain scaffolding plus enzymatic proteins. These studies address whether the multiple components of the synaptic density bind together in a static or slowly adapting molecular complex, or whether critical interactions are fluid on a minute-to-minute basis.


2021 ◽  
Author(s):  
Hiromi H Ueda ◽  
Aiko Sato ◽  
Maki Onda ◽  
Hideji Murakoshi

Synaptic plasticity is long-lasting changes in synaptic currents and structure. When neurons are exposed to signals that induce aberrant neuronal excitation, they increase the threshold for the induction of synaptic plasticity, called homeostatic plasticity. To further understand the homeostatic regulation of synaptic plasticity and its molecular mechanisms, we investigated glutamate uncaging/photoactivatable (pa)CaMKII-dependent sLTP induction in hippocampal CA1 neurons after chronic neuronal excitation by GABAA receptor antagonists. The neuronal excitation suppressed the glutamate uncaging-evoked Ca2+ influx and failed to induce sLTP. Single-spine optogenetic stimulation using paCaMKII also failed to induce sLTP, suggesting that CaMKII downstream signaling is impaired in response to chronic neuronal excitation. Furthermore, while the inhibition of Ca2+ influx was protein synthesis-independent, paCaMKII-induced sLTP depended on it. Our findings demonstrate that chronic neuronal excitation suppresses sLTP in two independent ways (i.e., the inhibitions of Ca2+ influx and CaMKII downstream signaling), which may contribute to the robust neuronal protection in excitable environments.


2020 ◽  
Author(s):  
Mason L. Yeh ◽  
Jessica R Yasko ◽  
Eric S. Levine ◽  
Betty A. Eipper ◽  
Richard Mains

Abstract Background: Kalirin-7 (Kal7) is a multidomain scaffold and guanine nucleotide exchange factor localized to the postsynaptic density, where Kal7 is crucial for synaptic plasticity. Kal7 knockout mice exhibit marked suppression of long-term potentiation and long-term depression in hippocampus, cerebral cortex and spinal cord, with depressed surface expression of GluN2B receptor subunits and dramatically blunted perception of pain. Kal7 knockout animals show exaggerated locomotor responses to psychostimulants and self-administer cocaine more enthusiastically than wildtype mice. Results: To address the underlying cellular and molecular mechanisms which are deranged by loss of Kal7, we infused candidate intracellular interfering peptides to acutely challenge the synaptic function(s) of Kal7 with potential protein binding partners, to determine if plasticity deficits in Kal7-/- mice are the product of developmental processes since conception, or could be produced on a much shorter time scale. We demonstrated that these small intracellular peptides disrupted normal long-term potentiation and long-term depression, strongly suggesting that maintenance of established interactions of Kal7 with PSD-95 and/or GluN2B is crucial to synaptic plasticity. Conclusions: Blockade of the Kal7-GluN2B interaction was most effective at blocking long-term potentiation, but had no effect on long-term depression. Biochemical approaches indicated that Kal7 interacted with PSD-95 at multiple sites within Kal7.


2019 ◽  
Author(s):  
Autumn S. Ivy ◽  
Tim Yu ◽  
Enikö Kramár ◽  
Sonia Parievsky ◽  
Fred Sohn ◽  
...  

AbstractAerobic exercise is a powerful modulator of learning and memory. Molecular mechanisms underlying the cognitive benefits of exercise are well documented in adult rodents. Animal models of exercise targeting specific postnatal periods of hippocampal development and plasticity are lacking. Here we characterize a model of early-life exercise (ELE) in male and female mice designed with the goal of identifying critical periods by which exercise may have a lasting impact on hippocampal memory and synaptic plasticity. Mice freely accessed a running wheel during three postnatal periods: the 4th postnatal week (juvenile ELE, P21-27), 6th postnatal week (adolescent ELE, P35-41), or 4th-6th postnatal weeks (juvenile-adolescent ELE, P21-41). All exercise groups significantly increased their running distances over time. When exposed to a weak learning stimulus, mice that had exercised during the juvenile period were able to form lasting long-term memory for a hippocampus-dependent spatial memory task. Electrophysiological experiments revealed enhanced long-term potentiation in hippocampal CA1 the juvenile-adolescent ELE group only. Furthermore, basal synaptic transmission was significantly increased in all mice that exercised during the juvenile period. Our results suggest early-life exercise can enable hippocampal memory, synaptic plasticity, and basal synaptic physiology when occurring during postnatal periods of hippocampal maturation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yihui Cui ◽  
Ilya Prokin ◽  
Hao Xu ◽  
Bruno Delord ◽  
Stephane Genet ◽  
...  

Synaptic plasticity is a cardinal cellular mechanism for learning and memory. The endocannabinoid (eCB) system has emerged as a pivotal pathway for synaptic plasticity because of its widely characterized ability to depress synaptic transmission on short- and long-term scales. Recent reports indicate that eCBs also mediate potentiation of the synapse. However, it is not known how eCB signaling may support bidirectionality. Here, we combined electrophysiology experiments with mathematical modeling to question the mechanisms of eCB bidirectionality in spike-timing dependent plasticity (STDP) at corticostriatal synapses. We demonstrate that STDP outcome is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Moreover, we show that eCB-tLTD requires active calcineurin whereas eCB-tLTP necessitates the activity of presynaptic PKA. Therefore, just like glutamate or GABA, eCB form a bidirectional system to encode learning and memory.


2019 ◽  
Vol 116 (12) ◽  
pp. 5737-5746 ◽  
Author(s):  
Karen Ka Lam Pang ◽  
Mahima Sharma ◽  
Kumar Krishna-K. ◽  
Thomas Behnisch ◽  
Sreedharan Sajikumar

In spike-timing-dependent plasticity (STDP), the direction and degree of synaptic modification are determined by the coherence of pre- and postsynaptic activities within a neuron. However, in the adult rat hippocampus, it remains unclear whether STDP-like mechanisms in a neuronal population induce synaptic potentiation of a long duration. Thus, we asked whether the magnitude and maintenance of synaptic plasticity in a population of CA1 neurons differ as a function of the temporal order and interval between pre- and postsynaptic activities. Modulation of the relative timing of Schaffer collateral fibers (presynaptic component) and CA1 axons (postsynaptic component) stimulations resulted in an asymmetric population STDP (pSTDP). The resulting potentiation in response to 20 pairings at 1 Hz was largest in magnitude and most persistent (4 h) when presynaptic activity coincided with or preceded postsynaptic activity. Interestingly, when postsynaptic activation preceded presynaptic stimulation by 20 ms, an immediate increase in field excitatory postsynaptic potentials was observed, but it eventually transformed into a synaptic depression. Furthermore, pSTDP engaged in selective forms of late-associative activity: It facilitated the maintenance of tetanization-induced early long-term potentiation (LTP) in neighboring synapses but not early long-term depression, reflecting possible mechanistic differences with classical tetanization-induced LTP. The data demonstrate that a pairing of pre- and postsynaptic activities in a neuronal population can greatly reduce the required number of synaptic plasticity-evoking events and induce a potentiation of a degree and duration similar to that with repeated tetanization. Thus, pSTDP determines synaptic efficacy in the hippocampal CA3–CA1 circuit and could bias the CA1 neuronal population toward potentiation in future events.


The Neuron ◽  
2015 ◽  
pp. 489-528
Author(s):  
Irwin B. Levitan ◽  
Leonard K. Kaczmarek

Psychologists have described different kinds of learning and memory, and there is an ongoing search for the physical basis of these distinctions and for the cellular and molecular mechanisms responsible. Because of the complexity of most nervous systems, the search has focused to a large extent on animals with relatively simple nervous systems and on reduced preparations. Common themes have emerged, such as the requirement for signaling pathways linked to calcium and cyclic AMP, and the fact that pathways used in normal development continue to be used for plasticity in adults. At the same time, it is clear that there is an enormous diversity of cellular mechanisms that contribute to short-term and long-term phases of memory formation. These include long-term potentiation (LTP), long-term depression (LTD), spike-timing dependent plasticity, synaptic tagging, and synaptic scaling. Each type of synaptic connection has its own personality such that, in response to a particular pattern of stimulation, one synapse may increase its postsynaptic receptors while another may expand its presynaptic terminals.


2020 ◽  
Vol 31 (3) ◽  
pp. 245-268 ◽  
Author(s):  
Diana Marcela Cuestas Torres ◽  
Fernando P. Cardenas

AbstractThe strength and efficiency of synaptic connections are affected by the environment or the experience of the individual. This property, called synaptic plasticity, is directly related to memory and learning processes and has been modeled at the cellular level. These types of cellular memory and learning models include specific stimulation protocols that generate a long-term strengthening of the synapses, called long-term potentiation, or a weakening of the said long-term synapses, called long-term depression. Although, for decades, researchers have believed that the main cause of the cognitive deficit that characterizes Alzheimer’s disease (AD) and aging was the loss of neurons, the hypothesis of an imbalance in the cellular and molecular mechanisms of synaptic plasticity underlying this deficit is currently widely accepted. An understanding of the molecular and cellular changes underlying the process of synaptic plasticity during the development of AD and aging will direct future studies to specific targets, resulting in the development of much more efficient and specific therapeutic strategies. In this review, we classify, discuss, and describe the main findings related to changes in the neurophysiological mechanisms of synaptic plasticity in excitatory synapses underlying AD and aging. In addition, we suggest possible mechanisms in which aging can become a high-risk factor for the development of AD and how its development could be prevented or slowed.


2019 ◽  
Author(s):  
Yulia Dembitskaya ◽  
Yu-Wei Wu ◽  
Alexey Semyanov

AbstractSynaptic plasticity is triggered by different patterns of neuronal network activity. Network activity leads to an increase in ambient GABA concentration and tonic activation of GABAA receptors. How tonic GABAA conductance affects synaptic plasticity during temporal and rate-based coding is poorly understood. Here, we show that tonic GABAA conductance differently affects long-term potentiation (LTP) induced by different stimulation patterns. The LTP based on a temporal spike - EPSP order (spike-timing-dependent [st] LTP) was not affected by exogenous GABA application. Backpropagating action potential, which enables Ca2+ entry through N-methyl-D-aspartate receptors (NMDARs) during stLTP induction, was only slightly reduced by the tonic conductance. In contrast, GABA application impeded LTP dependent on spiking rate (theta-burst-induced [tb] LTP) by reducing the EPSP bust response and, hence, NMDAR-mediated Ca2+ entry during tbLTP induction. Our results may explain the changes in different forms of memory under physiological and pathological conditions that affect tonic GABAA conductance.


Sign in / Sign up

Export Citation Format

Share Document