scholarly journals Radiative Flow of Third Grade Non-Newtonian Fluid From A Horizontal Circular Cylinder

2019 ◽  
Vol 8 (1) ◽  
pp. 673-687
Author(s):  
S. Abdul Gaffar ◽  
V. Ramachandra Prasad ◽  
P. Ramesh Reddy ◽  
B.Md. Hidayathulla Khan

Abstract In this article, we study the nonlinear steady thermal convection of an incompressible third-grade non-Newtonian fluid from a horizontal circular cylinder. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-differences Keller Box technique. The influence of a number of emerging non-dimensional parameters, namely the third-grade fluid parameter (ϕ), the material fluid parameters (ϵ1, ϵ2), Prandtl number (Pr), Biot number (y), thermal radiation (F) and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation is achieved. It is found that the velocity, skin friction and Nusselt number (heat transfer rate) reduce with increasing third grade fluid parameter (ϕ), whereas the temperature is enhanced. Increasing material fluid parameter (ϵ1) reduces the velocity and heat transfer rate but enhances the temperature and skin friction. The study is relevant to chemical materials processing applications and low density polymer materials processing.

Author(s):  
G. Janardhana Reddy ◽  
Ashwini Hiremath ◽  
Hussain Basha ◽  
N.S. Venkata Narayanan

Abstract The present study deals with the time-dependent natural convective supercritical third-grade fluid flow past a vertical cylinder. A new thermodynamic model for the supercritical carbon di-oxide (CO2) has been derived. In this model the thermal expansion coefficient is characterized as a function of pressure, temperature and compressibility factor. This model uses the Redlich-Kwong equation of state (RK-EOS). The numerically calculated thermal expansion coefficient values of CO2 are validated with available experimental results. The governing non-linear coupled partial differential equations are solved by using Crank-Nicolson method. The obtained numerical data is described in terms of velocity, temperature, skin-friction and Nusselt number through the graphs and tables for the different set of physical parameters. It is observed that the unsteady velocity is an increasing function of reduced pressure and reduced temperature; whereas it is a decreasing function with respect to third-grade fluid parameter. The temperature field is enhanced near the critical point for the increasing values of third-grade fluid parameter. In supercritical fluid region for the increasing values of reduced pressure and reduced temperature, the skin-friction values are magnified against time. Also, the average heat transfer rate decreases for increasing values of third-grade fluid parameter.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3711
Author(s):  
Asifa ◽  
Talha Anwar ◽  
Poom Kumam ◽  
Zahir Shah ◽  
Kanokwan Sitthithakerngkiet

In this modern era, nanofluids are considered one of the advanced kinds of heat transferring fluids due to their enhanced thermal features. The present study is conducted to investigate that how the suspension of molybdenum-disulfide (MoS2) nanoparticles boosts the thermal performance of a Casson-type fluid. Sodium alginate (NaAlg) based nanofluid is contained inside a vertical channel of width d and it exhibits a flow due to the movement of the left wall. The walls are nested in a permeable medium, and a uniform magnetic field and radiation flux are also involved in determining flow patterns and thermal behavior of the nanofluid. Depending on velocity boundary conditions, the flow phenomenon is examined for three different situations. To evaluate the influence of shape factor, MoS2 nanoparticles of blade, cylinder, platelet, and brick shapes are considered. The mathematical modeling is performed in the form of non-integer order operators, and a double fractional analysis is carried out by separately solving Caputo-Fabrizio and Atangana-Baleanu operators based fractional models. The system of coupled PDEs is converted to ODEs by operating the Laplace transformation, and Zakian’s algorithm is applied to approximate the Laplace inversion numerically. The solutions of flow and energy equations are presented in terms of graphical illustrations and tables to discuss important physical aspects of the observed problem. Moreover, a detailed inspection on shear stress and Nusselt number is carried out to get a deep insight into skin friction and heat transfer mechanisms. It is analyzed that the suspension of MoS2 nanoparticles leads to ameliorating the heat transfer rate up to 9.5%. To serve the purpose of achieving maximum heat transfer rate and reduced skin friction, the Atangana-Baleanu operator based fractional model is more effective. Furthermore, it is perceived that velocity and energy functions of the nanofluid exhibit significant variations because of the different shapes of nanoparticles.


2019 ◽  
Vol 33 (08) ◽  
pp. 1950060
Author(s):  
Ashwini Hiremath ◽  
G. Janardhana Reddy ◽  
Mahesh Kumar ◽  
O. Anwar Bég

The current study investigates theoretically and numerically the entropy generation in time-dependent free-convective third-grade viscoelastic fluid convection flow from a vertical plate. The nondimensional conservation equations for mass, momentum and energy are solved using a Crank–Nicolson finite difference method with suitable boundary conditions. Expressions for known values of flow-variables coefficients are also derived for the wall heat transfer and skin friction and numerically evaluated. The effect of Grashof number, Prandtl number, group parameter (product of dimensionless temperature difference and Brinkman number) and third-grade parameter on entropy heat generation is analyzed and shown graphically. Bejan line distributions are also presented for the influence of several control parameters. The computations reveal that with increasing third-grade parameter, the entropy generation decreases and Bejan number increases. Also, the comparison graph shows that contour lines for third-grade fluid vary considerably from the Newtonian fluid. The study is relevant to non-Newtonian thermal materials processing systems.


2016 ◽  
Vol 13 (8) ◽  
pp. 5327-5342 ◽  
Author(s):  
Zeeshan Khan ◽  
S Islam ◽  
Taza Gul ◽  
R. A Shah ◽  
S Shafie ◽  
...  

An approximation to the heat transfer rate across a laminar incompressible boundary layer, for arbitrary distribution of main stream velocity and of wall temperature, is obtained by using the energy equation in von Mises’s form, and approximating the coefficients in a manner which is most closely correct near the surface. The heat transfer rate to a portion of surface of length l (measured downstream from the start of the boundary layer) and unit breadth is given as -½ k /(⅓)! (3σρ/μ 2 ) ⅓ ∫ l 0 (∫ l x √{ T ( z )} dz ) ⅔ dT 0 ( x ), where k is the thermal conductivity of the fluid, σ its Prandtl number, ρ its density, μ its viscosity, T ( x ) is the skin friction, and T 0 ( x ) the excess of wall temperature over main stream temperature. A critical appraisement of the formula (§3) indicates that it should be very accurate for large σ, but that for σ of order 0.7 (i. e. for most gases) the constant ½3 ⅓ /(⅓) ! = 0.807 should be replaced by 0.73, when the error should not exceed 8 % for the laminar layers that occur in practical aerodynamics. This yields a formula Nu = 0.52σ ⅓ ( R √ C f ) ⅔ for Nusselt number in terms of the Reynolds number R and the mean square root of the skin friction coefficient C f , in the case of uniform wall temperature. However, for the boundary layer with uniform main stream, the original formula is accurate to within 3% even for σ = 0.7. By known transformations an expression is deduced for heat transfer to a surface, with arbitrary temperature distribution along it, and with a uniform stream outside it at arbitrary Mach number (equation (42)). From this, the temperature distribution along such a surface is deduced (§ 4) in the case (of importance at high Mach numbers) when heat transfer to it is balanced entirely by radiation from it. This calculation, which includes the solution of a non-linear integral equation, gives higher temperatures near the nose, and lower ones farther back (figure 2), than are found from a theory which assumes the wall temperature uniform and averages the heat transfer balance. This effect will be considerably mitigated for bodies of high thermal conductivity; the author is not in a position to say whether or not it will be appreciable for metal projectiles. But for stony meteorites at a certain stage of their flight through the atmosphere it indicates that melting at the nose and re-solidification farther back may occur, for which the shape and constitution of a few of them affords evidence. An appendix shows how the method for approximating and solving von Mises’s equation could be used to determine the skin friction as well as heat transfer rate, but this line seems to have no advantage over established approximate methods.


Sign in / Sign up

Export Citation Format

Share Document