scholarly journals EFFECTS OF CHEMICAL REACTION AND THERMAL RADIATION ON HEAT GENERATED STRETCHING SHEET IN A COUPLE STRESS FLUID FLOW

2016 ◽  
Vol 7 ◽  
Author(s):  
G. Nagaraju ◽  
Anjanna Matta ◽  
K. Kaladhar
2021 ◽  
Vol 10 (1) ◽  
pp. 343-362
Author(s):  
Suresha Suraiah Palaiah ◽  
Hussain Basha ◽  
Gudala Janardhana Reddy

Abstract Contemporary investigation studies the silent features of the dissipative free convection couple stress fluid flow over a cylinder under the action of magnetic field, thermal radiation and porous medium with chemical reaction effect. Present two-dimensional viscous incompressible physical model is designed based on the considered flow geometry. Present physical problem gives the highly complicated nonlinear coupled partial differential equations (PDE's) which are not amenable to any of the known techniques. Thus, unconditionally stable, most accurate and speed converging with flexible finite difference implicit technique is utilized to simplify the dimensionless flow field equations. It is apparent from the current results that; the velocity profiles are diminished with enhancing values of magnetic field. Temperature profile increases with enhancing values of thermal radiation parameter. Velocity contours deviates away from the wall with enhancing magnetic parameter. Also, the effects of magnetic field, porous medium, thermal radiation, chemical reaction, buoyancy ratio parameter and Eckert number on couple stress flow velocity, temperature, and concentration profiles are studied. However, the present study has good number of applications in the various fields of engineering such as; polymer processing, solidification of liquid crystals, colloidal solutions, synovial joints, geophysics, chemical engineering, astrophysics and nuclear reactors etc. Finally, the current solutions are validated with the available results in the literature review and found to be in good agreement.


2019 ◽  
Vol 97 (2) ◽  
pp. 166-175 ◽  
Author(s):  
Hussain Basha ◽  
G. Janardhana Reddy ◽  
M. Gnaneswara Reddy

The transient two-dimensional natural convective couple stress fluid flow past a semi-infinite vertical flat plate in the presence of first-order homogenous chemical reaction is investigated. The analysis has been carried out by considering the effects of skin-friction coefficient and Nusselt and Sherwood numbers. The unsteady coupled nonlinear governing flow equations have been solved by applying the Crank–Nicolson implicit finite difference scheme. For the different set physical parameters, graphs are shown and examined. A relevant study with existing results is made in a limiting sense. The transient and steady-state velocity profiles decrease as the chemical reaction parameter, Schmidt number, and couple stress parameter increase. The deviations of concentration, temperature, and velocity contours of the couple stress fluid flow are considerably varied in comparison with the Newtonian fluid flow.


2016 ◽  
Vol 19 (5) ◽  
pp. 391-404 ◽  
Author(s):  
B. M. Shankar ◽  
I. S. Shivakumara ◽  
Chiu-On Ng

Author(s):  
A. Shahid ◽  
M. Ali Abbas ◽  
H.L. Huang ◽  
S.R. Mishra ◽  
M.M. Bhatti

The present study analyses the dissipative influence into an unsteady electrically conducting fluid flow embedded in a pervious medium over a shrinkable sheet. The behavior of thermal radiation and chemical reactions are also contemplated. The governing partial differential equations are reformed to ordinary differential equations by operating similarity transformations. The numerical outcomes for the arising non-linear boundary value problem are determined by implementing the Successive linearization method (SLM) via Matlab software. The velocity, temperature, and concentration magnitudes for distant values of the governing parametric quantities are conferred, and their conduct is debated via graphical curves. The surface drag coefficient increases, whereas the local Nusselt number and Sherwood number decreases for enhancing unsteadiness parameter across suction parameter. Moreover, the magnetic and suction parameters accelerate velocity magnitudes while by raising porosity parameter, velocity decelerates. Larger numeric of thermal radiation parameter and Eckert number accelerates the temperature profile while by enhancing Prandtl number it decelerates. Schmidt number and chemical reaction parameters slowdowns the concentration distribution, and the chemical reaction parameter influences on the point of chemical reaction that benefits the interface mass transfer. It is expected that the current achieved results will furnish fruitful knowledge in industrious utilities.


2020 ◽  
Vol 9 (1) ◽  
pp. 352-360
Author(s):  
P. Aparna ◽  
P. Padmaja ◽  
N. Pothanna ◽  
J.V. Ramana Murthy

AbstractThe study of oscillating flow of a Couple Stress fluid past a permeable sphere is considered. Analytical solution for the flow field in terms of stream function is obtained using modified Bessel functions. The formula for Drag acting on the sphere due external flow is evaluated. Pressure field for the flow region past and inside the sphere is obtained. Effects of physical parameters like couple stress parameter, permeability, frequency and geometric parameters on the drag due to internal and external flows are represented graphically. It is observed that the drag for viscous fluid flow will be less than the case of couple-stress fluid flow and hence couple stress fluids offer resistance for flow.


Sign in / Sign up

Export Citation Format

Share Document