scholarly journals In vitro antagonism of five rhizobacterial species against athelia rolfsii collar rot disease in soybean

2018 ◽  
Vol 3 (1) ◽  
pp. 264-272 ◽  
Author(s):  
Irda Safni ◽  
Widya Antastia

Abstract Plant Growth Promoting Rhizobacteria (PGPR) influence plant growth by a number of direct (producing plant growth promoting substances) and indirect (through prevention of deleterious effects of phytopathogenic microorganisms) mechanisms. Five species of bacteria were isolated from rhizospheric soils of soybean and peanut fields from several locations in North Sumatra. On the basis of morphological and biochemical characteristics, the bacteria were identified as Aeromonas hydrophila, Burkholderia cepacia, Serratia ficaria, Pantoea spp. 2, and Vibrio alginolyticus. These species were tested in vitro against the causal pathogen of collar rot disease of soybean, Athelia rolfsii, which is an important soybean disease in Indonesia. The five species of bacteria were subjected to screening of antagonistic activities against A. rolfsii in vitro with a dual culture-technique. Of the five species, B. cepacia, S. ficaria and V. alginolyticus were the most effective antagonistic bacteria to control A. rolfsii. B. cepacia, S. ficaria and V. algynolitycus produced inhibiting zones against A. rolfsii of 98.35%, 97.83% and 96.97% respectively. All bacterial species showed their antagonistic activity significantly with the inhibiting zone percentage being more than 60%. The experimental results suggested that all bacterial species have a future potency as a biocontrol agent to reduce A. rolfsii collar rot disease of soybean

Author(s):  
Lynda Kelvin Asogwa ◽  
Frank C. Ogbo

Aims: To isolate Plant Growth Promoting Bacillus strain from maize roots, to evaluate its biocontrol potentials and to characterize the isolate using16S rRNA sequencing. Place and Duration of Study: Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, Awka, between February 2019 and March 2020. Methodology: The isolation of Plant Growth Promoting Rhizobacteria (PGPR) from maize roots was done using Pikovskaya (PVK) agar. Quantitative determination of phosphate was carried out using PVK broth. Evaluations of other plant growth promoting properties were carried out such as IAA, etc. Fusarium and Enterobacter plant pathogens were isolated from diseased maize plants. The in vitro antagonism effects of the PGPR isolates against the pathogens were analyzed using the dual culture plate technique. The pot experiment was carried out in a completely randomized design. Plant characteristics such as plant height, shoot  and root weight, chlorophyll content, as well as disease assessment were recorded accordingly. The organisms were identified using phenotypic and molecular methods. Results: Seven PGPR bacteria were isolated from maize (Zea mays) roots using PVK agar. Aneurinibacillus migulanus gave the highest solubilization index of 4.21 while isolate IS48 gave the lowest solubilization index of 1.47. A. migulanus produced IAA, ammonia and cellulase enzyme but no hydrogen cyanide. The organism showed antagonism activity against the two tested phytopathogens. In the pot experiment, A. migulanus treated plants showed a statistically insignificant difference in maize plant height at P=0.05 but gave significant increases in shoot and root wet weights. The organism offered 83.33% and 71.43% protection against Enterobacter and Fusarium pathogens respectively in the pot experiment. Conclusion: A. migulanus solubilized phosphate in addition to other plant growth promoting  properties. It showed biocontrol potentials both in vitro and in vivo and thus can be used as substitute for synthetic agrochemicals.


2021 ◽  
Author(s):  
Md. Mahfujur Rahman ◽  
Md. Mostafa Masud ◽  
Muhammad Iqbal Hossain ◽  
Nur-E-Tajkia Islam ◽  
Md. Zahangir Alam ◽  
...  

Rice is an important cereal worldwide and it occupies the top position among the cereals in Bangladesh. Rice plant suffers from around 32 diseases of which ten are major in Bangladesh at present. Among the diseases, Bacterial Blight (BB) caused by X. oryzae pv. oryzae (Xoo) considered as a most destructive disease occurs in both rainfed and irrigated seasons of Bangladesh. BB causes considerable yield loss varies from 30 to 50% depending on the outbreak. It is also an important disease in most of the South and Southeast Asian countries. To develop environment-friendly sustainable management approach against BB of rice, in total sixty three plant growth promoting bacteria were identified from rice phylloplane and rhizosphere that are antagonistic to X. oryzae pv. oryzae during boro and aman seasons 2018 and 2019.These bacterial species inhibited the growth of X. oryzae pv. oryzae in vitro by 20.83 to 76.19%. These bacterial isolates were identified by sequencing of PCR products of 16SrDNA belonging to the genera mostly Pseudomonas, Bacillus and Serratia. Out of these bacterial species, 48 bacterial species were found as positive for IAA production, all 63 bacterial species were found positive for siderophore production and 48 were found capable to solubilize insoluble phosphate. Based on growth inhibition of X. oryzae pv. oryzae in in vitro, thirty two bacterial species were selected for plant growth promotion assessment and evaluation of net house and field efficacy in controlling BB of rice. These bacterial species were formulated using talcum powder which was viable for at least three months post formulation. Assessment of plant growth promoting determinants revealed that all 32 bacterial species identified in this study enhance the growth of rice plants as measured by root and shoot length and and reduced the BB severity in susceptible rice cultivar significantly as compared with untreated control.


2018 ◽  
Vol 28 (1) ◽  
pp. 25-34
Author(s):  
Waheeda Parvin ◽  
Quazi Shirin Akhter Jahan ◽  
Md Mahbubur Rahman ◽  
Mui Yun Wong

Burkholderia cepacia UPMB3 is an important plant growth promoting rhizobacteria isolated from oil palm rhizosphere which is considered to promote plant growth directly or indirectly. The IAA was extracted, purified, detected and confirmed by thin layer chromatography analyses f r om t h e strain UPMB3 of B. cepacia. Rf value was compared with the authentic IAA. Maximum 50 μg/ml IAA was produced in the medium supplemented with 4 mg/ml L-tryptophan, under shaken conditions at 150 rpm in seven days incubation at pH 7. The bacterial extract significantly influenced the growth of oil palm seedlings producing shoot, root, leaf and leaf length compared to control.Plant Tissue Cult. & Biotech. 28(1): 25-34, 2018 (June)


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2436
Author(s):  
Marika Pellegrini ◽  
Claudia Ercole ◽  
Carmelo Gianchino ◽  
Matteo Bernardi ◽  
Loretta Pace ◽  
...  

Industrial hemp (Cannabis sativa L.) is a multipurpose plant used in several fields. Several phytopathogens attack hemp crops. Fusarium oxysporum is a common fungal pathogen that causes wilt disease in nurseries and in field cultivation and causes high losses. In the present study, a pathogenic strain belonging to F. oxysporum f. sp. cannabis was isolated from a plant showing Fusarium wilt. After isolation, identification was conducted based on morphological and molecular characterizations and pathogenicity tests. Selected plant growth-promoting bacteria with interesting biocontrol properties—Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and Burkholderia ambifaria—were tested against this pathogen. In vitro antagonistic activity was determined by the dual culture method. Effective strains (in vitro inhibition > of 50%) G. diazotrophicus, H. seropedicae and B. ambifaria were combined in a consortium and screened for in planta antagonistic activity in pre-emergence (before germination) and post-emergence (after germination). The consortium counteracted Fusarium infection both in pre-emergence and post-emergence. Our preliminary results show that the selected consortium could be further investigated as an effective biocontrol agent for the management of this pathogen.


2020 ◽  
Vol 367 (13) ◽  
Author(s):  
Marika Pellegrini ◽  
Claudia Ercole ◽  
Chiara Di Zio ◽  
Federica Matteucci ◽  
Loretta Pace ◽  
...  

ABSTRACT Potatoes (Solanum tuberosum L.) and tomatoes (Solanum lycopersicum L.), among the main crops belonging to the Solanaceae family, are attacked by several pathogens. Among them Fusarium oxysporum f. sp. radicis-lycopersici and Rhizoctonia solani are very common and cause significant losses. Four plant growth-promoting rhizobacteria, Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and Burkholderia ambifaria were tested against these pathogens. In vitro antagonistic activities of single strains were assessed through dual culture plates. Strains showing antagonistic activity (G. diazotrophicus, H. seropedicae and B. ambifaria) were combined and, after an in vitro confirmation, the consortium was applied on S. lycopersicum and S. tuberosum in a greenhouse pot experiment. The bioprotection was assessed in pre-emergence (infection before germination) and post-emergence (infection after germination). The consortium was able to successfully counteract the infection of both F. oxysporum and R. solani, allowing a regular development of plants. The biocontrol of the fungal pathogens was highlighted both in pre-emergence and post-emergence conditions. This selected consortium could be a valid alternative to agrochemicals and could be exploited as biocontrol agent to counteract losses due to these pathogenic fungi.


2019 ◽  
pp. 1-7 ◽  
Author(s):  
M. Ravi Teja ◽  
K. Vijay Krishna Kumar ◽  
H. Sudini

Aflatoxin contamination is a qualitative problem in groundnut (Arachis hypogaea L.) occurring at both pre-and post-harvest stages. These aflatoxins are secondary metabolites produced by Aspergillus flavus and A. parasiticus and have carcinogenic, hepatotoxic, teratogenic and immuno-suppressive effects. Use of plant growth-promoting rhizobacteria (PGPR) is a viable and sustainable option in managing aflatoxin problem in groundnut. Our present study is aimed at identifying a plant growth-promoting rhizobacteria (PGPR) strain with superior antagonistic abilities on A. flavus infection, aflatoxin contamination and to determine its mode of action. Ten native P. fluorescens isolates were isolated from groundnut rhizosphere and screened against A. flavus by dual culture and in vitro seed colonization (IVSC) assays. In dual culture and IVSC studies, Pf7 exhibited higher degree of antagonism on A. flavus (54% inhibition), inhibited its colonization and reduced aflatoxin contamination (27.8 µg kg-1) in kernels.


2021 ◽  
Vol 1 (1) ◽  
pp. 22-31
Author(s):  
Divya Mittal ◽  
Arun Kumar ◽  
Bhuvaneshwari Balasubramaniam ◽  
Rahul Thakur ◽  
Samarjeet Singh Siwal ◽  
...  

Biogenic nanoparticles (NPs) derived from microbes present an excellent opportunity to deal with various challenges in medicine, diagnosis, environment and agriculture. In the area of agriculture sciences, researchers are facing challenges related to excessive utilization of pesticides which can be answered by utilizing plant growth-promoting (PGP) microbes. Herein, we have employed the culture filtrate of two PBP bacteria strains, Serratia marcescens and Burkholderia cepacia to prepare biogenic silver NPs. The biogenic silver NPs were characterized by various techniques viz. UV-VIS spectroscopy, SEM, XRD and FTIR. The biogenic AgNPs were able to control the growth of phytopathogenic fungi Aspergillus niger, A. fumigatus, Fusarium oxysporum, Pythium sp., and Rosellinia sp. by more than 80% as examined by in vitro growth reduction on agar medium. Very significantly, the growth inhibition of seedlings by phytopathogenic fungi was efficiently rescued using biogenic AgNPs derived from PGP bacteria. These results indicate the potential use of biogenic NPs to reduce the burden of chemical-based pesticides.


Author(s):  
Peguy Flora Djuidje Kouomou ◽  
Cécile Annie Ewane ◽  
Sylvain Lerat ◽  
Denis Omokolo Ndoumou ◽  
Carole Beaulieu ◽  
...  

The focus of this study was to isolate, evaluate and characterize cocoyam rhizospheric actinobacteria collected from Mount Cameroon for their potential antagonistic activities against Pythium myriotylum, the causative agent of cocoyam root rot disease, and/or their ability to promote plant growth. Actinobacteria were isolated from soil samples by using serial dilution method. Dual culture assay was used to screen the isolates against fungal phytopathogens including P. myriotylum. The selected isolates were characterized morphologically, physiologically, biochemically and genetically. Furthermore, these isolates were subjected to in vitro production of various plant growth promoting (PGP) traits. Among the 287 isolates distributed into 12 distinct groups, PFK4, PFBOT7 and PFEL2 had high antagonistic effects against P. myriotylum and they were regarded as promising candidates for further study of their biocontrol ability. The identification of actinobacterial isolates was done using universal PCR of partial 16S rRNA sequences combined with bioinformatics and phylogenetic procedures. The results revealed that all these isolates belong to the genus Streptomyces spp. The isolate PFK4 showed 99% similarity with Streptomyces albulus while PFBOT7 showed 99% similarity with Streptomyces albus and PFEL2 showed 98% similarity with Streptomyces gandoceansis based on their 16S rRNA gene sequences. In this study for the first time, we report S. gandocaensis strain for the biological control of Pythium myriotylum. The role of these isolates in Plant Growth Promotion (PGP) by in vitro production of PGP traits such as phosphate solubilisation, siderophore, indole-3-acetic acid (IAA), ACC deaminase and cell wall degrading enzymes production were also evaluated and showed as potential PGP agents. Concurrent production of PGP substances coupled with broad spectrum of antifungal and antibacterial activities of these three strains suggest their potential use as promising biocontrol and PGP tools for the development of an alternative control method for cocoyam cultivation.


Sign in / Sign up

Export Citation Format

Share Document