scholarly journals Potential Role of Rice Plant Growth Promoting Phylloplane and Rhizospheric Bacteria in Controlling Xanthomonas oryzae pv. oryzae

2021 ◽  
Author(s):  
Md. Mahfujur Rahman ◽  
Md. Mostafa Masud ◽  
Muhammad Iqbal Hossain ◽  
Nur-E-Tajkia Islam ◽  
Md. Zahangir Alam ◽  
...  

Rice is an important cereal worldwide and it occupies the top position among the cereals in Bangladesh. Rice plant suffers from around 32 diseases of which ten are major in Bangladesh at present. Among the diseases, Bacterial Blight (BB) caused by X. oryzae pv. oryzae (Xoo) considered as a most destructive disease occurs in both rainfed and irrigated seasons of Bangladesh. BB causes considerable yield loss varies from 30 to 50% depending on the outbreak. It is also an important disease in most of the South and Southeast Asian countries. To develop environment-friendly sustainable management approach against BB of rice, in total sixty three plant growth promoting bacteria were identified from rice phylloplane and rhizosphere that are antagonistic to X. oryzae pv. oryzae during boro and aman seasons 2018 and 2019.These bacterial species inhibited the growth of X. oryzae pv. oryzae in vitro by 20.83 to 76.19%. These bacterial isolates were identified by sequencing of PCR products of 16SrDNA belonging to the genera mostly Pseudomonas, Bacillus and Serratia. Out of these bacterial species, 48 bacterial species were found as positive for IAA production, all 63 bacterial species were found positive for siderophore production and 48 were found capable to solubilize insoluble phosphate. Based on growth inhibition of X. oryzae pv. oryzae in in vitro, thirty two bacterial species were selected for plant growth promotion assessment and evaluation of net house and field efficacy in controlling BB of rice. These bacterial species were formulated using talcum powder which was viable for at least three months post formulation. Assessment of plant growth promoting determinants revealed that all 32 bacterial species identified in this study enhance the growth of rice plants as measured by root and shoot length and and reduced the BB severity in susceptible rice cultivar significantly as compared with untreated control.

2018 ◽  
Vol 3 (1) ◽  
pp. 264-272 ◽  
Author(s):  
Irda Safni ◽  
Widya Antastia

Abstract Plant Growth Promoting Rhizobacteria (PGPR) influence plant growth by a number of direct (producing plant growth promoting substances) and indirect (through prevention of deleterious effects of phytopathogenic microorganisms) mechanisms. Five species of bacteria were isolated from rhizospheric soils of soybean and peanut fields from several locations in North Sumatra. On the basis of morphological and biochemical characteristics, the bacteria were identified as Aeromonas hydrophila, Burkholderia cepacia, Serratia ficaria, Pantoea spp. 2, and Vibrio alginolyticus. These species were tested in vitro against the causal pathogen of collar rot disease of soybean, Athelia rolfsii, which is an important soybean disease in Indonesia. The five species of bacteria were subjected to screening of antagonistic activities against A. rolfsii in vitro with a dual culture-technique. Of the five species, B. cepacia, S. ficaria and V. alginolyticus were the most effective antagonistic bacteria to control A. rolfsii. B. cepacia, S. ficaria and V. algynolitycus produced inhibiting zones against A. rolfsii of 98.35%, 97.83% and 96.97% respectively. All bacterial species showed their antagonistic activity significantly with the inhibiting zone percentage being more than 60%. The experimental results suggested that all bacterial species have a future potency as a biocontrol agent to reduce A. rolfsii collar rot disease of soybean


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sujit Shah ◽  
Krishna Chand ◽  
Bhagwan Rekadwad ◽  
Yogesh S. Shouche ◽  
Jyotsna Sharma ◽  
...  

Abstract Background A plant growth-promoting endophytic bacterium PVL1 isolated from the leaf of Vanda cristata has the ability to colonize with roots of plants and protect the plant. PVL1 was isolated using laboratory synthetic media. 16S rRNA gene sequencing method has been employed for identification before and after root colonization ability. Results Original isolated and remunerated strain from colonized roots were identified as Bacillus spp. as per EzBiocloud database. The presence of bacteria in the root section of the plantlet was confirmed through Epifluorescence microscopy of colonized roots. The in-vitro plantlet colonized by PVL1 as well as DLMB attained higher growth than the control. PVL1 capable of producing plant beneficial phytohormone under in vitro cultivation. HPLC and GC-MS analysis suggest that colonized plants contain Indole Acetic Acid (IAA). The methanol extract of Bacillus spp., contains 0.015 μg in 1 μl concentration of IAA. PVL1 has the ability to produce antimicrobial compounds such as ethyl iso-allocholate, which exhibits immune restoring property. One-way ANOVA shows that results were statistically significant at P ≤ 0.05 level. Conclusions Hence, it has been concluded that Bacillus spp. PVL1 can promote plant growth through secretion of IAA during root colonization and ethyl iso-allocholate to protect plants from foreign infections. Thus, this study supports to support Koch’s postulates of bacteria establishment.


2021 ◽  
Vol 9 (8) ◽  
pp. 1588
Author(s):  
Anastasia Venieraki ◽  
Styliani N. Chorianopoulou ◽  
Panagiotis Katinakis ◽  
Dimitris L. Bouranis

Plant growth promoting rhizobacteria (PGPR) can be functional microbial fertilizers and/or biological control agents, contributing to an eco-spirit and safe solution for chemical replacement. Therefore, we have isolated rhizospheric arylsulfatase (ARS)-producing bacteria, belonging to Pseudomonas and Bacillus genus, from durum wheat crop grown on calcareous soil. These isolates harbouring plant growth promoting (PGP) traits were further evaluated in vitro for additional PGP traits, including indole compounds production and biocontrol activity against phytopathogens, limiting the group of multi-trait strains to eight. The selected bacterial strains were further evaluated for PGP attributes associated with biofilm formation, compatibility, salt tolerance ability and effect on plant growth. In vitro studies demonstrated that the multi-trait isolates, Bacillus (1.SG.7, 5.SG.3) and Pseudomonas (2.SG.20, 2.C.19) strains, enhanced the lateral roots abundance and shoots biomass, mitigated salinity stress, suggesting the utility of beneficial ARS-producing bacteria as potential microbial fertilizers. Furthermore, in vitro studies demonstrated that compatible combinations of multi-trait isolates, Bacillus sp. 1.SG.7 in a mixture coupled with 5.SG.3, and 2.C.19 with 5.SG.3 belonging to Bacillus and Pseudomonas, respectively, may enhance plant growth as compared to single inoculants.


Author(s):  
Lynda Kelvin Asogwa ◽  
Frank C. Ogbo

Aims: To isolate Plant Growth Promoting Bacillus strain from maize roots, to evaluate its biocontrol potentials and to characterize the isolate using16S rRNA sequencing. Place and Duration of Study: Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, Awka, between February 2019 and March 2020. Methodology: The isolation of Plant Growth Promoting Rhizobacteria (PGPR) from maize roots was done using Pikovskaya (PVK) agar. Quantitative determination of phosphate was carried out using PVK broth. Evaluations of other plant growth promoting properties were carried out such as IAA, etc. Fusarium and Enterobacter plant pathogens were isolated from diseased maize plants. The in vitro antagonism effects of the PGPR isolates against the pathogens were analyzed using the dual culture plate technique. The pot experiment was carried out in a completely randomized design. Plant characteristics such as plant height, shoot  and root weight, chlorophyll content, as well as disease assessment were recorded accordingly. The organisms were identified using phenotypic and molecular methods. Results: Seven PGPR bacteria were isolated from maize (Zea mays) roots using PVK agar. Aneurinibacillus migulanus gave the highest solubilization index of 4.21 while isolate IS48 gave the lowest solubilization index of 1.47. A. migulanus produced IAA, ammonia and cellulase enzyme but no hydrogen cyanide. The organism showed antagonism activity against the two tested phytopathogens. In the pot experiment, A. migulanus treated plants showed a statistically insignificant difference in maize plant height at P=0.05 but gave significant increases in shoot and root wet weights. The organism offered 83.33% and 71.43% protection against Enterobacter and Fusarium pathogens respectively in the pot experiment. Conclusion: A. migulanus solubilized phosphate in addition to other plant growth promoting  properties. It showed biocontrol potentials both in vitro and in vivo and thus can be used as substitute for synthetic agrochemicals.


Sign in / Sign up

Export Citation Format

Share Document