scholarly journals Glossary and tutorial of xenobiotic metabolism terms used during small molecule drug discovery and development (IUPAC Technical Report)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Paul Erhardt ◽  
Kenneth Bachmann ◽  
Donald Birkett ◽  
Michael Boberg ◽  
Nicholas Bodor ◽  
...  

Abstract This project originated more than 15 years ago with the intent to produce a glossary of drug metabolism terms having definitions especially applicable for use by practicing medicinal chemists. A first-draft version underwent extensive beta-testing that, fortuitously, engaged international audiences in a wide range of disciplines involved in drug discovery and development. It became clear that the inclusion of information to enhance discussions among this mix of participants would be even more valuable. The present version retains a chemical structure theme while expanding tutorial comments that aim to bridge the various perspectives that may arise during interdisciplinary communications about a given term. This glossary is intended to be educational for early stage researchers, as well as useful for investigators at various levels who participate on today’s highly multidisciplinary, collaborative small molecule drug discovery teams.

2018 ◽  
Vol 243 (13) ◽  
pp. 1037-1045 ◽  
Author(s):  
Abigail L Walker ◽  
Syed Z Imam ◽  
Ruth A Roberts

The discovery and development of new drugs are vital if we are to improve and expand treatment options available to improve outcomes for patients. Overall, therapeutic strategies fall into two broad categories: small molecules and biologics, although more recently there has been a growth in novel platforms such as miRNAs and oligonucleotides. On average, the development of a small molecule drug takes around 12 years and costs around $50m. Despite this huge investment of time and money, attrition remains a major challenge and very few molecules actually make it through to the market. Here, we look at reasons for attrition in the small molecule field with a focus on neurotoxicology and efforts being made to improve success via the development of imaging and fluidic biomarkers. We also look at learnings from other models of CNS damage and degeneration such as Parkinson’s disease, traumatic brain injury, and multiple sclerosis since these may offer the opportunity to improve tools available to nonclinical toxicologists in the early detection of potential neurotoxicity. Reciprocally, learnings from studies of animal neurotoxicity may offer better ways to potentially monitor patients during clinical development of new drugs for neurodegeneration. Impact statement Attrition in drug discovery and development remains a major challenge. Safety/toxicity is the most prevalent reason for failure with cardiovascular and CNS toxicities predominating. Non-invasive biomarkers of neurotoxicity would provide significant advantage by allowing earlier prediction of likely neurotoxicity in preclinical studies as well as facilitating clinical trials of new therapies for neurodegenerative conditions such as Parkinson’s disease (PD) and multiple sclerosis (MS).


2020 ◽  
Vol 7 (1) ◽  
pp. 4-16
Author(s):  
Daria Kotlarek ◽  
Agata Pawlik ◽  
Maria Sagan ◽  
Marta Sowała ◽  
Alina Zawiślak-Architek ◽  
...  

Targeted Protein Degradation (TPD) is an emerging new modality of drug discovery that offers unprecedented therapeutic benefits over traditional protein inhibition. Most importantly, TPD unlocks the untapped pool of the proteome that to date has been considered undruggable. Captor Therapeutics (Captor) is the fourth global, and first European, company that develops small molecule drug candidates based on the principles of targeted protein degradation. Captor is located in Basel, Switzerland and Wroclaw, Poland and exploits the best opportunities of the two sites – experience and non-dilutive European grants, and talent pool, respectively. Through over $38 M of funding, Captor has been active in three areas of TPD: molecular glues, bi-specific degraders and direct degraders, ObteronsTM.


Sign in / Sign up

Export Citation Format

Share Document