scholarly journals Reactivity of nano zero-valent iron in permeable reactive barriers

2015 ◽  
Vol 17 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Katarzyna Pawluk ◽  
Joanna Fronczyk ◽  
Kazimierz Garbulewski

Abstract In this paper, the ability of nZVI to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from multicomponent aqueous solutions was investigated through batch experiments. The experimental data were fitted to a second-order kinetic model based on solid capacity. The data for copper and lead fitted well into the second-order kinetic model, thus suggesting that the adsorption had a physical character. The values of the removal ratio and the second-order rate constant indicated that the order of adsorption priority of nZVI was as follows: Pb>Cu>Zn>Cd>Ni. The adsorption isotherm data were described by the most conventional models (Henry, Freundlich, and Langmuir). Equilibrium tests showed that copper and zinc were removed from the solution by adsorption processes, i.e., complexation and competitive adsorption. The test results suggested that the removal processes using nZVI are more kinetic than equilibrium. The study demonstrated that nZVI is favorable reactive material; however, comprehensive investigation should be performed for further in situ applications in PRB technology.

2020 ◽  
pp. 004051752095848
Author(s):  
Huiyu Jiang ◽  
Xiaodong Hu ◽  
Asfandyar Khan ◽  
Jinbo Yao ◽  
Muhammad Tahir Hussain

In this study, gardenia yellow solution is used to dye 100% cotton fabric. The dyeing rate curve and adsorption isotherms were recorded to explore the thermodynamic model and to calculate the corresponding parameters. A definite concentration of gardenia yellow solution was placed under the xenon arc lamp for irradiation to test its photodegradability. Absorbance of the solution was measured at different degradation times and the corresponding varying curve of the absorbance was drawn to explore the photodegradation reaction order of the natural colorant and consistent parameters were calculated. The experimental results proved that the dyeing of cotton fabric with gardenia yellow colorant followed the pseudo second order kinetic model whereas adsorption isotherm followed the Langmuir model and the photodegradation process followed the second order kinetic model. Values of different parameters were calculated: reaction rate constant k = 2.26 × 10–3 (mg · L−1)1−m h−1, the correlation coefficient R2 = 0.994, and half decay time t1/2 = 5.82 h.


2011 ◽  
Vol 115 (46) ◽  
pp. 13534-13540 ◽  
Author(s):  
Michael R. Mankbadi ◽  
Mohamed A. Barakat ◽  
Mohamed H. Ramadan ◽  
H. Lee Woodcock ◽  
John N. Kuhn

2012 ◽  
Vol 560-561 ◽  
pp. 1174-1177 ◽  
Author(s):  
Dimitar Petrov Georgiev ◽  
Bogdan Iliev Bogdanov ◽  
Yancho Hristov ◽  
Irena Markovska

In this study, the sorption of Cu(II) ions in aqueous solutions of Zeolite NaA by performing batch kinetic sorption experiments. The equilibrium kinetic data were analyzed using the pseudo-second-order kinetic model. A comparison was made of the linear least-squares method and nonlinear method of the widely used pseudo-second-order kinetic model for the sorption of Cu(II) ions of Zeolite . Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. Kinetic parameters obtained from four kinetic linear equations using the linear method differed. Equation type 1 pseudo-second-order kinetic model very well represented the kinetic of the adsorption Cu(II) ions by Zeolite NaA. Equation type 4 exhibited the worst fit. Present investigation showed that the non-linear method may be a better way to determine the kinetic parameters.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Budi Hastuti ◽  
Dwi Siswanta ◽  
Mudasir Mudasir ◽  
Triyono Triyono

Pectin and chitosan are biomaterials that capable to act as biosorbent. Pectin has active groups, such as carboxyl, methoxyl, and hydroxyl (OH), while chitosan has amine group (–NH2) and hydroxyl (OH) as the active site metal ion absorber. Integration of two biopolymers is conducted by using a suitable cross-linker agents that are expected to form stable and more organized structure. This structure facilitate metal ions to enter and to form chelation reaction. Thus, it has great capacity for metal adsorption. A modified natural adsorbent pectin-chitosan has been synthesized by reacting of -OH group among pectin (Pec) and chitosan with Poly(ethylene glycol) Diglycidyl Ether (PEGDE) crosslinker agent to form a stable and an acidic medium-resistance adsorbent. Prior to increasing the active group of the adsorbent, chitosan was attached with acetate to form Carboxymethyl Chitosan (CMC). Furthermore, the CMC-Pec-PEGDE adsorbent was imprinted with Pb (II) to afford Pb(II) imprinted-CMC-Pec-PEGDE adsorbent in order to improve the selective sorption of Pb(II) metal ion. All of the functional groups attached on the synthesized adsorbents were characterized by Fourier Transform Infrared (FT-IR) Spectrometry. The kinetics and thermodynamics bath sorption of Pb(II) on Pb(II) imprinted-CMC-Pec-PEGDE film adsorbent have been investigated including the optimal condition for adsorption. The pseudo first-order and second-order kinetic model were investigated in order to determine the adsorption mechanism. The results indicated that all of the three adsorbent, CMC, CMC-Pec-PEGDE, and Pb(II) imprinted-CMC-Pec-PEGDE followed a pseudo-second-order kinetic model. Furthermore, adsorption studies of Pb(II) ion on CMC and CMC–Pec-PEGDE found to follow Langmuir adsorption while on imprinted-CMC-Pec-PEGDE followed Freundlich adsorption isotherm. The adsorption isotherm parameters of CMC and CMC-Pec-PEGDE adsorbents were ΔG° of 24.8 and 23.1 kJ mol-1, respectively. While Pb(II) imprinted-CMC-Pec-PEGDE followedisotherm model with ΔG° of 9.6 kJ mol-1.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 689
Author(s):  
Omirserik Baigenzhenov ◽  
Alibek Khabiyev ◽  
Brajendra Mishra ◽  
M. Deniz Turan ◽  
Merey Akbarov ◽  
...  

This work studies the removal of uranium ions from chemically leached solutions by sorption using two weak and two strong base anionites. Batch sorption experiments were performed to evaluate the optimum conditions at pH 1.2–2.2, 1.0 g resin dose for 1–12 h contact time at room temperature. These experiments addressed sorption kinetics and sorption isotherm. The maximum sorption capacity reached 55.8 mg/g at room temperature. The kinetics data are well described by the pseudo-second-order kinetic model at initial uranium concentration of 0.62 mg·L−1. To describe sorption kinetics pseudo-first-order, pseudo-second-order and intraparticle diffusion models were proposed. Studies indicated that the sorption of uranium can be fitted by a pseudo-second-order kinetic model very well. Equilibria were described by Langmuir, Freundlich, and Dubinin–Radushkevich equations. The experimental sorption isotherm is successfully described by the Langmuir model.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1053
Author(s):  
Krzysztof Cendrowski ◽  
Karolina Opała ◽  
Ewa Mijowska

In this contribution, the synthesis of the metal−organic framework (MOF) based on lanthanum that exhibits trigonal prism shape is presented. The length of a single side of this structure ranges from 2 to 10 μm. The carbonized lanthanum-based organic framework (CMOF–La) maintained the original shape. However, the lanthanum oxide was reshaped in the form of rods during the carbonization. It resulted in the creation of parallel arranged channels. The unique structure of the carbonized structure motivated us to reveal its adsorption performance. Therefore, the adsorption kinetics of acid red 18 onto a carbonized metal−organic framework were conducted. Various physicochemical parameters such as initial dye concentration and pH of dye solution were investigated in an adsorption process. The adsorption was found to decrease with an increase in initial dye concentration. In addition, the increase in adsorption capacity was noticed when the solution was changed to basic. Optimal conditions were obtained at a low pH. Kinetic adsorption data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. The adsorption kinetics were well fitted using a pseudo-second-order kinetic model. It was found that the adsorption of anionic dye onto CMOF–La occurs by hydrophobic interactions between carbonized metal-organic framework and acid red 18.


2009 ◽  
Vol 151 (1-3) ◽  
pp. 1-9 ◽  
Author(s):  
Feng-Chin Wu ◽  
Ru-Ling Tseng ◽  
Shang-Chieh Huang ◽  
Ruey-Shin Juang

Sign in / Sign up

Export Citation Format

Share Document