scholarly journals Phenol and methylene blue photodegradation over Ti/SBA-15 materials under uv light

2016 ◽  
Vol 18 (3) ◽  
pp. 30-38 ◽  
Author(s):  
Tomasz Olejnik ◽  
Sylwia Pasieczna-Patkowska ◽  
Adam Lesiuk ◽  
Janusz Ryczkowski

Abstract Ordered SBA-15 mesoporous silica supports have been synthesized and used for incorporation of titanium with different Ti/Si weight ratio via incipient wetness impregnation. Titanium tetraisopropoxide (TTIP) was used as a source of Ti. Obtained catalysts were characterized to investigate the chemical framework and morphology by nitrogen sorption measurements, powder X-ray diffraction (XRD), X-ray fluorescence elemental analysis (XRF), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS). The photocatalytic degradation of phenol and methylene blue water solutions were selected as a probe reactions to the photoactivity test of prepared samples and to verify the potential application of these materials for water purification. Experimental results indicate that the photocatalytic activity of Ti/Si mixed materials depends on the adsorption ability of composites and the photocatalytic activity of the titanium oxide.

2015 ◽  
Vol 1123 ◽  
pp. 227-232 ◽  
Author(s):  
Iqriah Kalim Susanto ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

Nanocomposite Fe3O4-CuO-ZnO with different molar ratio of Fe3O4:CuO:ZnO were synthesized using sol-gel method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscope, UV-visible diffuse reflectance spectroscopy and vibrating sample magnetometer. The characterization results manifested that the combination of Fe3O4, CuO and ZnO nanoparticles was successful. The photocatalytic activity of nanocomposite with the molar ratio of 1:1:5 was more effective in the degradation of methylene blue under UV light irradiation than pure Fe3O4, CuO, ZnO. The role of photoactive species involved in the photocatalytic reaction was studied and found that holes play the most important role in photodegradation of methylene blue.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hao Cheng ◽  
Wenkang Zhang ◽  
Xinmei Liu ◽  
Tingfan Tang ◽  
Jianhua Xiong

TiO2 powder was firstly synthesized and carbon fiber was secondly prepared via the carbonization of polyaniline fiber, and TiO2/carbon fiber composites were lastly synthesized via a simple method at room temperature. The prepared samples are evidently investigated by X-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, photoluminescence spectrum, and X-ray photoelectron spectroscopy, respectively. Using the monochromatic light of ultraviolet, the photocatalytic activity of the TiO2/CF composites was accurately evaluated with respect to the degradation of an aqueous dye (methylene blue) solution. The relationship between the photocatalytic degradation of methylene blue dye and its ratio, contact time, and the amount of catalyst was studied. The kinetics and mechanisms of degradation were discussed. The results show that TiO2/CF composites have good photocatalytic activity and stability. The TiO2/CF2/1 composite was used in effective photocatalytic degradation of methylene blue, the weight ratio of TiO2 to carbon fiber was 2:1, and the degradation rate was obtaining up to 97.7% of degradation during 120 min of reaction. The photocatalytic stability of TiO2/CF composites was dependent on the stability of their structure. After 5 repeated uses, the composite TiO2/CF2/1 still exhibited rather high activity toward the degradation of methylene blue, where the decolorization efficiency of methylene blue achieved 92% and the loss of activity was negligible. Based on radical trapping experiments, the mechanism of TiO2/CF composites on photocatalytic degradation of methylene blue is proposed, which could explain the enhanced photocatalytic activity of the composites better. Superoxide radicals, photogenerated holes, and photogenerated electrons were the main active substances for methylene blue degradation.


2011 ◽  
Vol 335-336 ◽  
pp. 1385-1390 ◽  
Author(s):  
Shuo Wiei Zhao ◽  
Hui Xu ◽  
Hua Ming Li ◽  
Yuan Guo Xu

In order to improve the photocatalytic activity, Co was successfully loaded into Ag3VO4 by using impregnation process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). The XRD and SEM–EDS analyses revealed that Co ion was dispersed on Ag3VO4. The DRS results indicated that the absorption edge of the Co–Ag3VO4 catalyst shifted to longer wavelength. The enhanced photocatalytic activity of Co–Ag3VO4 for Methylene Blue(MB) dye degradation under visible light irradiation was due to its wider absorption edge and higher separation rate of photo-generated electron and holes. In the experimental conditions, it is demonstrated that the MB was effectively degraded by more than 95% within 40 min when the Co–Ag3VO4 catalyst was calcined at 300°C with 1 wt.% Co content.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jiang Zhang ◽  
Zheng-Hong Huang ◽  
Yong Xu ◽  
Feiyu Kang

The iodine-doped Bi2WO6(I-BWO) photocatalyst was prepared via a hydrothermal method using potassium iodide as the source of iodine. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The photocatalytic activity of I-BWO for the degradation of rhodamine B (RhB) was higher than that of pure BWO and I2-BWO regardless of visible light (>420 nm) or ultraviolet light (<400 nm) irradiation. The results of DRS analysis showed that the I-BWO and I2-BWO catalysts had narrower band gaps. XPS analysis proved that the multivalent iodine species including I0and were coadsorbed on the defect surface of Bi2WO6in I-BWO. The enhanced PL intensity revealed that a large number of defects of oxygen vacancies were formed by the doping of iodine. The enhanced photocatalytic activity of I-BWO for degradation of RhB was caused by the synergetic effect of a small crystalline size, a narrow band gap, and plenty of oxygen vacancies.


Author(s):  
Irwing M. Ramírez-Sánchez ◽  
Erick R. Bandala

Iron Doped TiO2 nanoparticles (Fe-TiO2) were synthesized and photocatalitically investigated under high and low fluence values of UV-radiation. The Fe-TiO2 physical characterization was performed using X-ray Powder Diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Diffuse Reflectance Spectroscopy (DRS), and X-Ray Photoelectron Spectroscopy (XPS) technique. The XPS evidenced that ferric ion (Fe3+) was in the lattice of TiO2 and co-dopants no intentionally added were also present due to the precursors of the synthetic method. The Fe3+ concentration played a key role in the photocatalytic generation of hydroxyl radical (&bull;OH) and estriol (E3) degradation. Fe-TiO2 materials accomplished E3 degradation, and it was found that the catalyst with 0.3 at. % content of Fe (0.3 Fe-TiO2) enhanced the photocatalytic activity under low UV-irradiation compared with no intentionally Fe-added TiO2 (zero-iron TiO2) and Aeroxide&reg; TiO2 P25. Furthermore, the enhanced photocatalytic activity of 0.3 Fe-TiO2 under low UV-irradiation may have applications when radiation intensity must be controlled, as in medical applications, or when strong UV absorbing species are present in water.


Author(s):  
Thế Luân Nguyễn ◽  
Tiến Khoa Lê ◽  
Châu Ngọc Hoàng ◽  
Hữu Khánh Hưng Nguyễn ◽  
Thị Kiều Xuân Huỳnh

The Cu doped ZnO photocatalysts were prepared on ZnO substrate modified with copper nitrate by thermal shock method with different ratio % molar Cu : Zn = 0.3, 0.5, 1.0, 2.0 and 5.0 in order to study the impacts of copper content on the photocatalytic activity of ZnO under both UV and Vis light irradiation. The crystal structure, morphology bulk and surface were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were studied via time-dependent degradation of methylene blue in aqueous solution. The results exhibit that crystal structure and morphology of Cu doped ZnO photocatalysts is not modified significally than ZnO original but surface charateristicschanged greatly. The photocatalyst was doped with copper content under 2% showed formation of Cu species. These samples perform photocatalytic activity higher than ZnO. The CuNZO-0.05-500 had the highest rate constants for methylene blue degradation (kUV = 6,901 h-1, kVIS = 0,224 h-1), which are about 2.2 times and 1.3 times higher than unmodified ZnO under UV light and Vis light, respectively. However, the CuNZO-5.0-500 which had the formation of CuO phase and unchangeable ZnO's surface has photocatalytic activity similar to pure ZnO.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 672 ◽  
Author(s):  
Zuzanna Bielan ◽  
Agnieszka Sulowska ◽  
Szymon Dudziak ◽  
Katarzyna Siuzdak ◽  
Jacek Ryl ◽  
...  

In the presented work, for the first time, the metal-modified defective titanium(IV) oxide nanoparticles with well-defined titanium vacancies, was successfully obtained. Introducing platinum and copper nanoparticles (NPs) as surface modifiers of defective d-TiO2 significantly increased the photocatalytic activity in both UV-Vis and Vis light ranges. Moreover, metal NPs deposition on the magnetic core allowed for the effective separation and reuse of the nanometer-sized photocatalyst from the suspension after the treatment process. The obtained Fe3O4@SiO2/d-TiO2-Pt/Cu photocatalysts were characterized by X-ray diffractometry (XRD) and specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Further, the mechanism of phenol degradation and the role of four oxidative species (h+, e−, •OH, and •O2−) in the studied photocatalytic process were investigated.


2011 ◽  
Vol 399-401 ◽  
pp. 1241-1245
Author(s):  
Jin Feng Zhang ◽  
Xiao Ling Yu ◽  
Wei Liu ◽  
Shi Fu Chen

Orthorhombic Nb2WO8 was synthesized by solid state reaction in Nb2O5-WO3 system. Heterojunction photocatalyst Nb2WO8/ZnO was prepared by ball milling. The structural and optical properties of the photocatalyst were characterized by X-ray powder diffraction, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy, and fluorescence emission spectroscopy.The photocatalytic activity was evaluated by photocatalytic oxidation of rhodamine B and reduction of Cr6+. The results showed that the photocatalytic activity of the Nb2WO8/ZnO was higher than that of ZnO. When the amount of doped Nb2WO8 was 10 wt.% and the sample was ball milled for 9 h, the Nb2WO8/ZnO showed the optimal photocatalytic activity. Effect of ball milling time on the photocatalytic activity was also investigated. The mechanisms of the increase in the photocatalytic activity were discussed by the valence band principle.


2016 ◽  
Vol 680 ◽  
pp. 193-197
Author(s):  
San Ti Yi ◽  
Si Qin Zhao

TiO2, 1%La/TiO2, 1%Ce/TiO2 and a series of Laand Ce co-doped TiO2 photocatalysts were prepared by sol-gel method. Using sol-gel method combine with hydrothermal method prepared rare earth La, Ce and nitrogen co-doped TiO2 photocatalysts. The microstructure, spectroscopy performance and ion doped form of prepared samples were characterized by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectroscopy techniques and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of doped TiO2 were examined by measuring the photodegradation of methyl orange. The results showed that the products were all anatase TiO2 nano powder, doping Laor Cehinder the growth of TiO2 particle, further more, doping Laand Cetogether hinder the growth of TiO2 particle more effective, doping N broaden the light response range of TiO2 photocatalyst. At the same time, the photocatalytic activity results indicated that the prepared samples showed superior UV light photocatalytic activity, the sample 1% (La:Ce,9:1)-N/TiO2 showed the highest UV-vis photocatalytic activity.


2011 ◽  
Vol 391-392 ◽  
pp. 219-224
Author(s):  
Jin Huan Li ◽  
Hong Bo Fang ◽  
Wei Wang ◽  
Gui Fan Liu ◽  
Shao Dong Zhang

Nanocrystals with different Eu3+ doping levels (%) were prepared by sol-gel and hydrothermal synthetic method using titanium tetraisopropoxide (TTIP) as titanium source. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The crystallite sizes, crystal form, surface shape, composition and optical property of catalysts were characterized by X-ray diffraction patterns, UV-Vis diffuse reflectance spectroscopy, XPS and inductively coupled plasma atomic emission spectroscopy. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO2 were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu3+ composites, and the reasons were explained.


Sign in / Sign up

Export Citation Format

Share Document