Parametric and energy consumption optimization of Basic Red 2 removal by electrocoagulation/egg shell adsorption coupling using response surface methodology in a batch system

2015 ◽  
Vol 73 (11) ◽  
pp. 2572-2582 ◽  
Author(s):  
Helder Pereira de Carvalho ◽  
Jiguo Huang ◽  
Meixia Zhao ◽  
Gang Liu ◽  
Xinyu Yang ◽  
...  

In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R2 values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm2 current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.

2020 ◽  
Vol 82 (9) ◽  
pp. 1950-1960
Author(s):  
Yihui Zhou ◽  
Tao Xu ◽  
Jinhua Ou ◽  
Gege Zou ◽  
Xiping Lei ◽  
...  

Abstract A novel sinusoidal alternating current coagulation (SACC) technique was used to remove the Zn2+ from wastewater in the present study. The response surface methodology was used to analyze the effect of current density, time, initial pH and initial Zn2+ concentration in order to obtain the optimum removal efficiency and to lower energy consumption. The results show that SACC with a current density of 0.31 A·m−2 applied to treat wastewater containing 120 mg·dm−3 Zn2+ at pH = 9 for 21.3 min can achieve a removal efficiency of Zn2+ of 98.80%, and the energy consumption is 1.147 kWh·m−3. The main component of flocs produced in SACC process is Fe5O7OH·4H2O (HFO). Large specific surface area and good adsorption performance of HFO are demonstrated. There is strong interaction between Zn2+ and HFO. Zn2+ is adsorbed and trapped by HFO and then co-precipitated. Freundlich adsorption isotherm model and pseudo-second order kinetics model explained the Zn2+ adsorption behavior well. The Zn2+ adsorption on HFO is an endothermic and spontaneous process.


2017 ◽  
Vol 19 (2) ◽  
pp. 67-71 ◽  
Author(s):  
Ha Manh Bui

Abstract The COD removal efficiency from an instant coffee processing wastewater using electrocoagulation was investigated. For this purpose, the response surface methodology was employed, using central composing design to optimize three of the most important operating variables, i.e., electrolysis time, current density and initial pH. The results based upon statistical analysis showed that the quadratic models for COD removal were significant at very low probability value (<0.0001) and high coefficient of determination (R2 = 0.9621) value. The statistical results also indicated that all the three variables and the interaction between initial pH and electrolysis time were significant on COD abatement. The maximum predicted COD removal using the response function reached 93.3% with electrolysis time of 10 min, current density of 108.3 A/m2 and initial pH of 7.0, respectively. The removal efficiency value was agreed well with the experimental value of COD removal (90.4%) under the optimum conditions.


2018 ◽  
Vol 9 (2) ◽  
pp. 163-172
Author(s):  
Mijia Zhu ◽  
Xianqing Yin ◽  
Wu Chen ◽  
Zhengji Yi ◽  
Heyong Tian

Abstract The removal of sulphate ions constitutes one of the main challenges in mining, metallurgical and other industries. This work evaluated sulphate removal from aqueous solutions by an electrocoagulation (EC)/raw straw activated carbon (RSAC) adsorption coupled process. The process parameters affecting sulphate removal efficiency were investigated: current density (0–100 mA/cm2), RSAC dosage (0–0.8 g/L), initial pH (4–9) and reaction time (0–40 min). A central composite design coupled with response surface methodology (RSM) was used to construct a mathematic model of EC/RSAC process that considers three key variables, namely current density, RSAC dosage and reaction time. Under optimum conditions (current density of 75 mA/cm2, dosage of 0.46 g/L and reaction time of 19.2 min), the removal efficiency of sulphate reached 95.2%. The RSM predictive value was 94.08% with a small deviation (1.12%). Thus, the fundamental data and results can provide some useful information for further studies and applications of the EC/RSAC coupled system in sulphate-containing wastewater treatment.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1687
Author(s):  
Razieh Niazmand ◽  
Moslem Jahani ◽  
Farzaneh Sabbagh ◽  
Shahabaldin Rezania

In the present study, the optimization of electrocoagulation (EC) conditions for the purification of olive debittering wastewater (ODW) was investigated by response surface methodology (RSM). For this purpose, a central composite design (CCD) was employed to optimize the process variables including current density (3.0–30.0 mA/cm2) and EC time (10.0–60.0 min). The results showed a significant effect of current density and EC time on the removal efficiency of total phenolic compounds (TPC) and chemical oxygen demand (COD). The best models obtained using the central composite design were quadratic polynomial for TPC (R2 = 0.993), COD (R2 = 0.982), and the inverse square root of turbidity (R2 = 0.926). Additionally, the square root of electrode consumption and energy consumption were appropriately fitted to the two-factor interaction (2FI) model (R2 = 0.977) and quadratic polynomial (R2 = 0.966) model, respectively. The predicted optimum conditions based on the highest removal efficiency for TPC were a current density of 21.1 mA cm−2 and an EC time of 58.9 min, in which the obtained model predicted 82.6% removal for TPC. This prediction was in agreement with the laboratory result (83.5%). The amount of energy consumption and the operating cost in these conditions was estimated to be 14.92 kWh and USD 6.49 m−3 per ODW, respectively.


2016 ◽  
Vol 74 (3) ◽  
pp. 564-579 ◽  
Author(s):  
Ceyhun Akarsu ◽  
Yasin Ozay ◽  
Nadir Dizge ◽  
H. Elif Gulsen ◽  
Hasan Ates ◽  
...  

Marine pollution has been considered an increasing problem because of the increase in sea transportation day by day. Therefore, a large volume of bilge water which contains petroleum, oil and hydrocarbons in high concentrations is generated from all types of ships. In this study, treatment of bilge water by electrocoagulation/electroflotation and nanofiltration integrated process is investigated as a function of voltage, time, and initial pH with aluminum electrode as both anode and cathode. Moreover, a commercial NF270 flat-sheet membrane was also used for further purification. Box–Behnken design combined with response surface methodology was used to study the response pattern and determine the optimum conditions for maximum chemical oxygen demand (COD) removal and minimum metal ion contents of bilge water. Three independent variables, namely voltage (5–15 V), initial pH (4.5–8.0) and time (30–90 min) were transformed to coded values. The COD removal percent, UV absorbance at 254 nm, pH value (after treatment), and concentration of metal ions (Ti, As, Cu, Cr, Zn, Sr, Mo) were obtained as responses. Analysis of variance results showed that all the models were significant except for Zn (P &gt; 0.05), because the calculated F values for these models were less than the critical F value for the considered probability (P = 0.05). The obtained R2 and Radj2 values signified the correlation between the experimental data and predicted responses: except for the model of Zn concentration after treatment, the high R2 values showed the goodness of fit of the model. While the increase in the applied voltage showed negative effects, the increases in time and pH showed a positive effect on COD removal efficiency; also the most effective linear term was found as time. A positive sign of the interactive coefficients of the voltage–time and pH–time systems indicated synergistic effect on COD removal efficiency, whereas interaction between voltage and pH showed an antagonistic effect.


2017 ◽  
Vol 76 (12) ◽  
pp. 3410-3427 ◽  
Author(s):  
Ş. Camcıoğlu ◽  
B. Özyurt ◽  
İ. C. Doğan ◽  
H. Hapoğlu

Abstract In this work the application of response surface methodology (RSM) to proportional-integral-derivative (PID) controller parameter tuning for electrocoagulation (EC) treatment of pulp and paper mill wastewater was researched. Dynamic data for two controlled variables (pH and electrical conductivity) were obtained under pseudo random binary sequence (PRBS) input signals applied to manipulated variables (acid and supporting electrolyte flow rates). Third order plus time delay model parameters were evaluated through System Identification Toolbox™ in MATLAB®. Four level full factorial design was applied to form a design matrix for three controller tuning parameters as factors and to evaluate statistical analysis of the system in terms of integral of square error (ISE), integral of absolute error (IAE), integral of time square error (ITSE) and integral of time absolute error (ITAE) performance criteria as response. Numerical values of the responses for the runs in the design matrices were determined using closed-loop PID control system simulations designed in Simulink®. Optimum proportional gain, integral action and derivative action values for electrical conductivity control were found to be 1,500 s, 0 s and 16.4636 s respectively. Accordingly, the same optimization scheme was followed for pH control and optimum controller parameters were found to be −8.6970 s, 0.0211 s and 50 s, respectively. Theoretically optimized controller parameters were applied to batch experimental studies. Chemical oxygen demand (COD) removal efficiency and energy consumption of pulp and paper mill wastewater treatment by EC under controlled action of pH at 5.5 and electrical conductivity at 2.72 mS/cm was found to be 85% and 3.87 kWh/m3 respectively. Results showed that multi input–multi output (MIMO) control action increased removal efficiency of COD by 15.41% and reduced energy consumption by 6.52% in comparison with treatment under uncontrolled conditions.


2014 ◽  
Vol 69 (5) ◽  
pp. 1080-1087 ◽  
Author(s):  
Xianzhong Cao ◽  
Huiqing Lou ◽  
Wei Wei ◽  
Lijuan Zhu

In this study, the Box-Benkhen design and response surface method (RSM) were applied to evaluate and optimize the operating variables during the treatment of tetrahydrofuran (THF) wastewater by Fenton process. The four factors investigated were initial pH, Fe2+ dosage, H2O2 dosage and reaction time. Statistical analysis showed the linear coefficients of the four factors and the interactive coefficients such as initial pH/Fe2+ dosage, initial pH/H2O2 dosage and Fe2+ dosage/H2O2 dosage all significantly affected the removal efficiency. The RSM optimization results demonstrated that the chemical oxygen demand (COD) removal efficiency could reach up to 47.8% when initial pH was 4.49, Fe2+ dosage was 2.52 mM, H2O2 dosage was 20 mM and reaction time was 110.3 min. Simultaneously, the biodegradability increased obviously after the treatment. The main intermediates of 2-hydroxytetrahydrofuran, γ-butyrolactone and 4-hydroxybutanoate were separated and identified and then a simple degradation pathway of THF was proposed. This work indicated that the Fenton process was an efficient and feasible pre-treatment method for THF wastewater.


2020 ◽  
Vol 81 (6) ◽  
pp. 1308-1318
Author(s):  
Yue Sun ◽  
Xinlei Feng ◽  
Shun Fu

Abstract Inspired by metalloporphyrin-based enzymes, a biomimetic catalyst, R-N-Fe, was prepared by grafting iron phthalocyanine (FePc) covalently onto a macroporous chloromethylated polystyrene-divinylbenzene resin (R), which was pre-functionalized using 4-aminopyridine (4-ampy) as an axial ligand. The novel catalyst was used for the degradation of oxytetracycline hydrochloride (OTCH). The response surface methodology was employed to optimize the independent operating parameters, including temperature, catalyst amount, H2O2 dosage, and initial pH value. The results displayed that the initial pH and temperature had the most significant effect on the removal efficiency. Under optimum conditions, the OTCH removal efficiency was 93.98%. Additionally, the classical quenching experiment and electron paramagnetic resonance (EPR) test indicated that R-N-Fe could generate hydroxyl radicals by decomposing H2O2, which was the main active species for eliminating OTCH. Furthermore, R-N-Fe can be easily recycled and can maintain high stability in the reusability test, rendering it a good potential for practical application.


2021 ◽  
Vol 13 (1) ◽  
pp. 61-68
Author(s):  
A.K. Varma ◽  
A. Chouhan ◽  
R. Shankar ◽  
P. Mondal ◽  
A.K. Rathore ◽  
...  

In the present study, the electrocoagulation process using iron electrodes was used to treat synthetic water containing lead and copper. Box-Behnken design of response surface methodology was applied to optimize the process variables namely initial pH, current density and treatment time along with operating cost. At optimum conditions (initial pH: 5, current density: 50 A/m2, treatment time: 40 min), the model predicted value for removal of lead and copper was found as 102.81% and 99.75%, respectively with an operating cost of 0.481 USD/m3. Whereas, the actual or experimental values of lead and copper removal were found as 99.98 % and 99.88 % as well as operating cost of 0.476 USD/m3, which signifies a good closeness between the model predicted values and actual values. The concentration of lead and copper in treated water was found below the permissible limits as per CPCB norms for industrial discharge.


2019 ◽  
Vol 38 (3) ◽  
pp. 322-331
Author(s):  
Mehmet Ünsal ◽  
Işıl Işık-Gülsaç ◽  
Ersin Üresin ◽  
Mustafa Salih Budak ◽  
Kader Özgür-Büyüksakallı ◽  
...  

The aim of this study is to present the optimum operating conditions for reducing energy consumption in the process of obtaining bio-oil from the mixture of sawdust, waste lubricating oil, lime, and commercial catalyst. In the study where the catalytic pressureless depolymerisation (also called Katalytische Drucklose Verölung – KDV) was applied, the operating conditions were analysed with response surface methodology. According to the analysis of variance results, a mathematical model was obtained for specific product yield (bio-oil amount/energy consumption g kWe−1). Effects of temperature (260°C–290°C), catalyst rate (1–2 wt.%) and reaction time (0.5–1 h) were investigated. The optimum conditions for the three independent variables (temperature, catalyst rate, reaction time) were 279 ± 2°C, 2 wt.% and 0.5 h, respectively. Maximum specific product yield was obtained as 970.17 g kWe−1. While the reaction time was the most effective regarding the amount of bio-oil obtained at 1 kWe energy consumption, the temperature was found to be the least effective. In addition to these, bio-oil obtained under optimum conditions were characterised and compared with standard diesel specifications.


Sign in / Sign up

Export Citation Format

Share Document