Utilization of nanotechnology in targeted radionuclide cancer therapy: monotherapy, combined therapy and radiosensitization

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Noha Anwer Bayoumi ◽  
Mohamed Taha El-Kolaly

Abstract The rapid progress of nanomedicine field has a great influence on the different tumor therapeutic trends. It achieves a potential targeting of the therapeutic agent to the tumor site with neglectable exposure of the normal tissue. In nuclear medicine, nanocarriers have been employed for targeted delivery of therapeutic radioisotopes to the malignant tissues. This systemic radiotherapy is employed to overcome the external radiation therapy drawbacks. This review overviews studies concerned with investigation of different nanoparticles as promising carriers for targeted radiotherapy. It discusses the employment of different nanovehicles for achievement of the synergistic effect of targeted radiotherapy with other tumor therapeutic modalities such as hyperthermia and photodynamic therapy. Radiosensitization utilizing different nanosensitizer loaded nanoparticles has also been discussed briefly as one of the nanomedicine approach in radiotherapy.

2020 ◽  
Vol 17 (10) ◽  
pp. 911-924
Author(s):  
Rohitas Deshmukh

Colon cancer is one of the most prevalent diseases, and traditional chemotherapy has not been proven beneficial in its treatment. It ranks second in terms of mortality due to all cancers for all ages. Lack of selectivity and poor biodistribution are the biggest challenges in developing potential therapeutic agents for the treatment of colon cancer. Nanoparticles hold enormous prospects as an effective drug delivery system. The delivery systems employing the use of polymers, such as chitosan and pectin as carrier molecules, ensure the maximum absorption of the drug, reduce unwanted side effects and also offer protection to the therapeutic agent from quick clearance or degradation, thus allowing an increased amount of the drug to reach the target tissue or cells. In this systematic review of published literature, the author aimed to assess the role of chitosan and pectin as polymer-carriers in colon targeted delivery of drugs in colon cancer therapy. This review summarizes the various studies employing the use of chitosan and pectin in colon targeted drug delivery systems.


2021 ◽  
Vol 22 (9) ◽  
pp. 4975
Author(s):  
Olga Shilova ◽  
Elena Shramova ◽  
Galina Proshkina ◽  
Sergey Deyev

Cancer cells frequently overexpress specific surface receptors providing tumor growth and survival which can be used for precise therapy. Targeting cancer cell receptors with protein toxins is an attractive approach widely used in contemporary experimental oncology and preclinical studies. Methods of targeted delivery of toxins to cancer cells, different drug carriers based on nanosized materials (liposomes, nanoparticles, polymers), the most promising designed light-activated toxins, as well as mechanisms of the cytotoxic action of the main natural toxins used in modern experimental oncology, are discussed in this review. The prospects of the combined therapy of tumors based on multimodal nanostructures are also discussed.


2008 ◽  
Vol 51 (spe) ◽  
pp. 77-82 ◽  
Author(s):  
Sotiris Missailidis ◽  
Alan Perkins ◽  
Sebastião David Santos-Filho ◽  
Adenilson de Souza da Fonseca ◽  
Mario Bernardo-Filho

In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects.


Author(s):  
Bryan P. McKee ◽  
Nicole M. Johnson

Radiation therapy is a therapeutic option in the treatment of many childhood cancers. It involves the use of high-energy waves and/or matter that injure and kill cancer cells. Radiation therapy may be delivered to a patient via external, internal, and systemic methods. Procedural sedation is most frequently requested for external radiation therapy. Regardless of the method of external radiation used, patient immobility contributes greatly to successful therapy. The goal of the sedationist in the management of a child undergoing radiation therapy is to maintain the optimal environment in terms of patient safety and immobility so that the radiation oncology team can provide the most effective treatment.


Sign in / Sign up

Export Citation Format

Share Document