A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects

2015 ◽  
Vol 30 (3) ◽  
Author(s):  
Adewale Allen Sokan-Adeaga ◽  
Godson R.E.E. Ana

AbstractThe quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria’s primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria’s development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the establishment of biofuel-processing plants in Nigeria.

2007 ◽  
Vol 39 (2) ◽  
pp. 365-372 ◽  
Author(s):  
Marie E. Walsh ◽  
Daniel G. De La Torre Ugarte ◽  
Burton C. English ◽  
Kimberly Jensen ◽  
Chad Hellwinckel ◽  
...  

Analysis of the potential to supply 25% of projected 2025 U.S. transportation fuels indicates sufficient biomass resources are available to meet increased demand while simultaneously meeting food, feed, and export needs. Corn and soybeans continue to be important feedstocks for ethanol and biodiesel production, but cellulose feedstocks (agricultural crop residues, energy crops such as switchgrass, and forestry residues) will play a major role. Farm income increases, mostly because of higher crop prices. Increased crop prices increase the cost of producing biofuels.


2008 ◽  
Vol 32 (6) ◽  
pp. 541-550 ◽  
Author(s):  
A. Lehtomäki ◽  
T.A. Viinikainen ◽  
J.A. Rintala

2020 ◽  
Vol 23 (3) ◽  
pp. 105-110
Author(s):  
Fatemeh Rahimi-Ajdadi ◽  
Masoomeh Esmaili

AbstractAgricultural crop residues like stems, straws and leaves are valuable resources for biofuel production, especially methane, due to anaerobic digestion. Biogas from agricultural lignocellulosic wastes is capable of attaining sustainable energy yields without environmental pollution. Farmers in many developing countries burn these wastes throughout their fields, imposing environmental hazard due to emission of greenhouse gases. The main problem in this field is the recalcitrance of the agricultural lignocellulose waste that limits its enzymatic degradation and hydrolysis efficiency and consequently decreases biogas production. Therefore, efficient pre-treatments prior to anaerobic digestion are essential. Various pre-treatment methods are used for increasing the anaerobic digestibility of lignocellulose biomass, such as physical (mechanical, thermal, etc.), chemical, biological and combined pre-treatments. This paper reviews different pre-treatments used in anaerobic digestion for the agricultural lignocellulosic wastes and explains the advantages and disadvantages of each. The most frequently used pre-treatments for main agricultural wastes in process of biogas production are also introduced.


2021 ◽  
Vol 13 (1) ◽  
pp. 381
Author(s):  
Nii Nelson ◽  
Jo Darkwa ◽  
John Calautit ◽  
Mark Worall ◽  
Robert Mokaya ◽  
...  

Crop residues are common in rural Ghana due to the predominant role agriculture plays in livelihood activities in these communities. In this paper we investigate the prospects of exploiting agricultural crop residues for rural development in Ghana through bioenergy schemes. A theoretical energy potential of 623.84 PJ per year, which is equivalent to 19,781 MW was estimated using crop production data from the Food and Agricultural Organization of the United Nations and residue-to-product ratios. Ghana has a total installed generation capacity of 4577 MW which is four times less the energy potential of crop residues in the country. Cocoa pod husks were identified as important biomass resources for energy generation as they are currently wasted. To further assess the energy potential of cocoa pod husks, different cocoa pod husks samples were collected across the six cocoa growing regions in Ghana and thermo-chemically characterised using proximate and ultimate analysis. The low levels of nitrogen and sulphur observed, together with the high heating value, suggest that cocoa pod husks and for that matter crop residues are eco-friendly feedstock that can be used to power rural communities in Ghana.


2019 ◽  
Vol 4 (6) ◽  
pp. 6-14
Author(s):  
Abdul Ghani Noori ◽  
P. Abdul Salam ◽  
Agha Mohammad Fazli

Biomass plays a major role in satisfying the energy needs of Afghanistan, especially in the residential sector where fuel demand is primarily met in the form of fuelwood, charcoal, crop residues and animal manure. Till now, enough work has not been undertaken to assess the biomass energy potential in the country to support renewable energy development plans and more sustainable use of biomass resources. This paper is limited to the assessment of biomass energy potential from the following resources: (A) forest fuelwood and charcoal, (B) crop residues (wheat, rice, barley and maize residues) and (C) cattle manure for the years 2012-13 and 2013-14. The study assesses a total biomass energy potential of 97,310 TJ during the period 2012-13 and 99,012 TJ during the period 2013-14. It is observed that only about 52% of the estimated biomass energy potential is being exploited. The estimated energy potential of the selected biomass could contribute up to 69% in the primary energy consumption of Afghanistan (140,966 TJ) during the year 2012-13. 


2013 ◽  
Vol 33 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Mariana M. Corradi ◽  
Alan R. Panosso ◽  
Marcílio V. Martins Filho ◽  
Newton La Scala Junior

The proper management of agricultural crop residues could produce benefits in a warmer, more drought-prone world. Field experiments were conducted in sugarcane production areas in the Southern Brazil to assess the influence of crop residues on the soil surface in short-term CO2 emissions. The study was carried out over a period of 50 days after establishing 6 plots with and without crop residues applied to the soil surface. The effects of sugarcane residues on CO2 emissions were immediate; the emissions from residue-covered plots with equivalent densities of 3 (D50) and 6 (D100) t ha-1 (dry mass) were less than those from non-covered plots (D0). Additionally, the covered fields had lower soil temperatures and higher soil moisture for most of the studied days, especially during the periods of drought. Total emissions were as high as 553.62 ± 47.20 g CO2 m-2, and as low as 384.69 ± 31.69 g CO2 m-2 in non-covered (D0) and covered plot with an equivalent density of 3 t ha-1 (D50), respectively. Our results indicate a significant reduction in CO2 emissions, indicating conservation of soil carbon over the short-term period following the application of sugarcane residues to the soil surface.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 675 ◽  
Author(s):  
Feledyn-Szewczyk ◽  
Radzikowski ◽  
Stalenga ◽  
Matyka

The purpose of the study was to compare earthworm communities under winter wheat in different crop production systems on arable land—organic (ORG), integrated (INT), conventional (CON), monoculture (MON)—and under perennial crops cultivated for energy purposes—willow (WIL), Virginia mallow (VIR), and miscanthus (MIS). Earthworm abundance, biomass, and species composition were assessed each spring and autumn in the years 2014–2016 using the method of soil blocks. The mean species number of earthworms was ordered in the following way: ORG > VIR > WIL > CON > INT > MIS > MON. Mean abundance of earthworms decreased in the following order: ORG > WIL > CON > VIR > INT > MIS > MON. There were significantly more species under winter wheat cultivated organically than under the integrated system (p = 0.045), miscanthus (p = 0.039), and wheat monoculture (p = 0.002). Earthworm abundance was significantly higher in the organic system compared to wheat monoculture (p = 0.001) and to miscanthus (p = 0.008). Among the tested energy crops, Virginia mallow created the best habitat for species richness and biomass due to the high amount of crop residues suitable for earthworms and was similar to the organic system. Differences in the composition of earthworm species in the soil under the compared agricultural systems were proven. Energy crops, except miscanthus, have been found to increase earthworm diversity, as they are good crops for landscape diversification.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rikke Lybæk ◽  
Tyge Kjær

This article investigates how biogas technology can facilitate the deployment of municipal circular bio-economic solutions within the energy and agrarian sectors in Denmark. The emphasis is on the regional climate policy and the existing biogas technology concepts, within a decentralized energy market located in the Southern part of Zealand. The case analysis will identify how such technology can be utilized as a lever for future “extraction-activities,” as for example protein, wax, and furfural substrates. Within Falster & Lolland Municipalities, it is identified that 800.000 tons of animal manure is readily available for biogas production, just as 880.000 tons and 220.000 tons of unused beet tops and residual cereal straw could be feed to biogas facilities as for example co-silage materials. With a potential gas yield of approximately 897.000 MWh, composed by the crop residues alone, the challenge is how to utilize such resources the most efficient when addressing future needs for bio-products and high value materials and energy. Through the lens of Circular Bio-Economy this article addresses three themes, by which biogas technology can become an “engine” for future bioenergy solutions, where cascading activities and use of side-streams are developed: 1) production of biogas by means of local agricultural residues (beet tops, residual straw, and animal manure), combined with 2) “extraction-activities” as furfural and wax from straw, as well as protein from beet tops. Besides this 3) opportunities for upgrading the biogas and distributing it on a natural gas network, hereby enlarging the supply market for energy services from the biogas plant and facilitating the development of a more “integrated energy system,” currently being promoted by the European Commission. This article concludes on a step-by-step approach to utilize biomass residues more efficiently in light of the CBE concept and cascading approach, and the available biomass resources within the specific case area addressed.


Sign in / Sign up

Export Citation Format

Share Document