Changes in H-reflex amplitude to muscle stretch and lengthening in humans

2016 ◽  
Vol 27 (5) ◽  
pp. 511-522 ◽  
Author(s):  
Francesco Budini ◽  
Markus Tilp

AbstractSpinal reflex excitability is traditionally assessed to investigate neural adjustments that occur during human movement. Different experimental procedures are known to condition spinal reflex excitability. Among these, lengthening movements and static stretching the human triceps have been investigated over the last 50 years. The purpose of this review is to shed light on several apparent incongruities in terms of magnitude and duration of the reported results. In the present review dissimilarities in neuro-spinal changes are examined in relation to the methodologies applied to condition and measure them. Literature that investigated three different conditioning procedures was reviewed: passive dorsiflexion, active dorsiflexion through antagonists shortening and eccentric plantar-flexors contractions. Measurements were obtained before, during and after lengthening or stretching. Stimulation intensities and time delays between conditioning procedures and stimuli varied considerably. H-reflex decreases immediately as static stretching is applied and in proportion to the stretch degree. During dorsiflexions the inhibition is stronger with greater dorsiflexion angular velocity and at lower nerve stimulation intensities, while it is weaker if any concomitant muscle contraction is performed. Within 2 s after a single passive dorsiflexion movement, H-reflex is strongly inhibited, and this effect disappears within 15 s. Dorsiflexions repeated over 1 h and prolonged static stretching training induce long-lasting inhibition. This review highlights that the apparent disagreement between studies is ascribable to small methodological differences. Lengthening movements and stretching can strongly influence spinal neural pathways. Results interpretation, however, needs careful consideration of the methodology applied.

2012 ◽  
Vol 112 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Carolina Vila-Chã ◽  
Deborah Falla ◽  
Miguel Velhote Correia ◽  
Dario Farina

This study examined the effects of 3 wk of either endurance or strength training on plasticity of the neural mechanisms involved in the soleus H reflex and V wave. Twenty-five sedentary healthy subjects were randomized into an endurance group ( n = 13) or strength group ( n = 12). Evoked V-wave, H-reflex, and M-wave recruitment curves, maximal voluntary contraction (MVC), and time-to-task-failure (isometric contraction at 40% MVC) of the plantar flexors were recorded before and after training. Following strength training, MVC of the plantar flexors increased by 14.4 ± 5.2% in the strength group ( P < 0.001), whereas time-to-task-failure was prolonged in the endurance group (22.7 ± 17.1%; P < 0.05). The V wave-to-maximal M wave (V/Mmax) ratio increased significantly (55.1 ± 28.3%; P < 0.001) following strength training, but the maximal H wave-to-maximal M wave (Hmax/Mmax) ratio remained unchanged. Conversely, in the endurance group the V/Mmax ratio was not altered, whereas the Hmax/Mmax ratio increased by 30.8 ± 21.7% ( P < 0.05). The endurance training group also displayed a reduction in the H-reflex excitability threshold while the H-reflex amplitude on the ascending limb of the recruitment curve increased. Strength training only elicited a significant decrease in H-reflex excitability threshold, while H-reflex amplitudes over the ascending limb remained unchanged. These observations indicate that the H-reflex pathway is strongly involved in the enhanced endurance resistance that occurs following endurance training. On the contrary, the improvements in MVC following strength training are likely attributed to increased descending drive and/or modulation in afferents other than Ia afferents.


2020 ◽  
Author(s):  
Guillaume Caron ◽  
Jadwiga N. Bilchak ◽  
Marie-Pascale Côté

ABSTRACTSpinal cord injury (SCI) results in the disruption of supraspinal control of spinal networks and an increase in the relative influence of afferent feedback to sublesional neural networks, both of which contribute to enhancing spinal reflex excitability. Hyperreflexia occurs in ~75% of individuals with chronic SCI and critically hinders functional recovery and quality of life. It is suggested to result from an increase in motoneuronal excitability and a decrease in presynaptic and postsynaptic inhibitory mechanisms. In contrast, locomotor training decreases hyperreflexia by restoring presynaptic inhibition.Primary afferent depolarization (PAD) is a powerful presynaptic inhibitory mechanism that selectively gates primary afferent transmission to spinal neurons to adjust reflex excitability and ensure smooth movement. However, the effect of chronic SCI and step-training on the reorganization of presynaptic inhibition evoked by hindlimb afferents, and the contribution of PAD has never been demonstrated. The objective of this study is to directly measure changes in presynaptic inhibition through dorsal root potentials (DRPs) and its association to plantar H-reflex inhibition. We provide direct evidence that H-reflex hyperexcitability is associated with a decrease in transmission of PAD pathways activated by PBSt afferents after chronic SCI. More precisely, we illustrate that PBSt group I muscle afferents evoke a similar pattern of inhibition onto both L4-DRPs and plantar H-reflexes evoked by the tibial nerve in Control and step-trained animals, but not in chronic SCI rats. These changes are not observed after step-training, suggesting a role for activity-dependent plasticity to regulate PAD pathways activated by flexor muscle group I afferents.Key point summaryPresynaptic inhibition is modulated by supraspinal centers and primary afferents in order to filter sensory information, adjust spinal reflex excitability, and ensure smooth movements.After SCI, the supraspinal control of primary afferent depolarization (PAD) interneurons is disengaged, suggesting an increased role for sensory afferents. While increased H-reflex excitability in spastic individuals indicates a possible decrease in presynaptic inhibition, it remains unclear whether a decrease in sensory-evoked PAD contributes to this effect.We investigated whether the PAD evoked by hindlimb afferents contributes to the change in presynaptic inhibition of the H-reflex in a decerebrated rat preparation. We found that chronic SCI decreases presynaptic inhibition of the plantar H-reflex through a reduction in PAD evoked by PBSt muscle group I afferents.We further found that step-training restored presynaptic inhibition of the plantar H-reflex evoked by PBSt, suggesting the presence of activity-dependent plasticity of PAD pathways activated by flexor muscle group I afferents.


2017 ◽  
Vol 102 (8) ◽  
pp. 901-910 ◽  
Author(s):  
Francesco Budini ◽  
Eugen Gallasch ◽  
Monica Christova ◽  
Dietmar Rafolt ◽  
Andreas Benedikt Rauscher ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Francesco Budini ◽  
Monica Christova ◽  
Eugen Gallasch ◽  
Dietmar Rafolt ◽  
Markus Tilp

2021 ◽  
Vol 15 ◽  
Author(s):  
Md. Anamul Islam ◽  
Timothy S. Pulverenti ◽  
Maria Knikou

This study investigated the neuromodulatory effects of transspinal stimulation on soleus H-reflex excitability and electromyographic (EMG) activity during stepping in humans with and without spinal cord injury (SCI). Thirteen able-bodied adults and 5 individuals with SCI participated in the study. EMG activity from both legs was determined for steps without, during, and after a single-pulse or pulse train transspinal stimulation delivered during stepping randomly at different phases of the step cycle. The soleus H-reflex was recorded in both subject groups under control conditions and following single-pulse transspinal stimulation at an individualized exactly similar positive and negative conditioning-test interval. The EMG activity was decreased in both subject groups at the steps during transspinal stimulation, while intralimb and interlimb coordination were altered only in SCI subjects. At the steps immediately after transspinal stimulation, the physiological phase-dependent EMG modulation pattern remained unaffected in able-bodied subjects. The conditioned soleus H-reflex was depressed throughout the step cycle in both subject groups. Transspinal stimulation modulated depolarization of motoneurons over multiple segments, limb coordination, and soleus H-reflex excitability during assisted stepping. The soleus H-reflex depression may be the result of complex spinal inhibitory interneuronal circuits activated by transspinal stimulation and collision between orthodromic and antidromic volleys in the peripheral mixed nerve. The soleus H-reflex depression by transspinal stimulation suggests a potential application for normalization of spinal reflex excitability after SCI.


2015 ◽  
Vol 114 (1) ◽  
pp. 427-439 ◽  
Author(s):  
Hyosub E. Kim ◽  
Daniel M. Corcos ◽  
T. George Hornby

This study of chronic incomplete spinal cord injury (SCI) subjects investigated patterns of central motor drive (i.e., central activation) of the plantar flexors using interpolated twitches, and modulation of soleus H-reflexes during lengthening, isometric, and shortening muscle actions. In a recent study of the knee extensors, SCI subjects demonstrated greater central activation ratio (CAR) values during lengthening (i.e., eccentric) maximal voluntary contractions (MVCs), compared with during isometric or shortening (i.e., concentric) MVCs. In contrast, healthy controls demonstrated lower lengthening CAR values compared with their isometric and shortening CARs. For the present investigation, we hypothesized SCI subjects would again produce their highest CAR values during lengthening MVCs, and that these increases in central activation were partially attributable to greater efficacy of Ia-α motoneuron transmission during muscle lengthening following SCI. Results show SCI subjects produced higher CAR values during lengthening vs. isometric or shortening MVCs (all P < 0.001). H-reflex testing revealed normalized H-reflexes (maximal SOL H-reflex-to-maximal M-wave ratios) were greater for SCI than controls during passive ( P = 0.023) and active (i.e., 75% MVC; P = 0.017) lengthening, suggesting facilitation of Ia transmission post-SCI. Additionally, measures of spinal reflex excitability (passive lengthening maximal SOL H-reflex-to-maximal M-wave ratio) in SCI were positively correlated with soleus electromyographic activity and CAR values during lengthening MVCs (both P < 0.05). The present study presents evidence that patterns of dynamic muscle activation are altered following SCI, and that greater central activation during lengthening contractions is partly due to enhanced efficacy of Ia-α motoneuron transmission.


Motor Control ◽  
2020 ◽  
Vol 24 (2) ◽  
pp. 189-203
Author(s):  
Aviroop Dutt-Mazumder ◽  
Richard L. Segal ◽  
Aiko K. Thompson

This study investigated effects of ankle joint angle on the Hoffman’s reflex (H-reflex) excitability during loaded (weight borne with both legs) and unloaded (full body weight borne with the contralateral leg) standing in people without neurological injuries. Soleus H-reflex/M-wave recruitment curves were examined during upright standing on three different slopes that imposed plantar flexion (−15°), dorsiflexion (+15°), and neutral (0°) angles at the ankle, with the test leg loaded and unloaded. With the leg loaded and unloaded, maximum H-reflex/maximum M-wave ratio of −15° was significantly larger than those of 0° and +15° conditions. The maximum H-reflex/maximum M-wave ratios were 51%, 43%, and 41% with loaded and 56%, 46%, and 44% with unloaded for −15°, 0°, and +15° slope conditions, respectively. Thus, limb loading/unloading had limited impact on the extent of influence that ankle angles exert on the H-reflex excitability. This suggests that task-dependent central nervous system control of reflex excitability may regulate the influence of sensory input on the spinal reflex during standing.


2021 ◽  
Vol 11 (6) ◽  
pp. 2830
Author(s):  
Kyeong Eun Min ◽  
YongSuk Lee ◽  
Jihong Park

To examine individual or combined effects of static stretch and explosive contraction on quadriceps spinal-reflex excitability (the peak Hoffmann’s reflex normalized by the peak motor-response) and the latency times of the Hoffmann’s reflex and motor-response. Fourteen healthy young males randomly experienced four conditions (stretch, contraction, stretch + contraction, and control—no intervention). For the stretch condition, three sets of a 30 s hold using the modified Thomas test on each leg were performed. For the contraction condition, three trials of maximal countermovement vertical jump were performed. Quadriceps spinal-reflex excitability and the latent period of each value on the right leg were compared at pre- and post-condition. All measurement values across conditions were not changed at any time point (condition × time) in spinal-reflex excitability (F6,143 = 1.10, p = 0.36), Hoffmann’s reflex latency (F6,143 = 0.45, p = 0.84), motor-response latency (F6,143 = 0.37, p = 0.90), and vertical jump heights (F2,65 = 1.82, p = 0.17). A statistical trend was observed in the contraction condition that spinal-reflex excitability was increased by 42% (effect size: 0.63). Neither static stretch nor explosive contraction changed the quadriceps spinal-reflex excitability, latency of Hoffmann’s reflex, and motor-response. Since our stretch protocol did not affect jumping performance and our contraction protocol induced the post-activation potentiation effect, either protocol could be used as pre-exercise activity.


2008 ◽  
Vol 3 (2) ◽  
pp. 219-231 ◽  
Author(s):  
Matthew J. Hodgson ◽  
David Docherty ◽  
E. Paul Zehr

The contractile history of muscle can potentiate electrically evoked force production. A link to voluntary force production, related in part to an increase in reflex excitability, has been suggested.Purpose:Our purpose was to quantify the effect of postactivation potentiation on voluntary force production and spinal H-reflex excitability during explosive plantar fexion actions.Methods:Plantar flexor twitch torque, soleus H-reflex amplitudes, and the rate of force development of explosive plantar fexion were measured before and after 4 separate conditioning trials (3 × 5 s maximal contractions).Results:Twitch torque and rate of force production during voluntary explosive plantar flexion were significantly increased (P < .05) while H-reflex amplitudes remained unchanged. Although twitch torque was significantly higher after conditioning, leading to a small increase in the rate of voluntary force production, this was unrelated to changes in reflex excitability.Conclusion:We conclude that postactivation potentiation may result in a minor increase in the rate of voluntary isometric force production that is unrelated to neural excitability.


Sign in / Sign up

Export Citation Format

Share Document