scholarly journals Investigation of penetration into woven fabric specimens impregnated with shear thickening fluid

2018 ◽  
Vol 25 (1) ◽  
pp. 205-212 ◽  
Author(s):  
Naser Kordani ◽  
Ali Sadough Vanini

AbstractIn this paper, the effect of weight fraction of nano silica (hydrophilic fumed silica particles) and molecular mass of polyethylene glycol (PEG) on the rheological properties such as the critical shear rate of fluids has been studied. Dynamic moduli based on strain and the effects of increasing the molecular weight are presented. Constructed samples with high-molecular-weight PEG have higher initial, final and critical viscosities. Also, higher molecular chains in the polymer and preventing the movement of most of these chains against the relative motion of liquid (viscosity) will cause higher viscosity in samples. Critical shear rate is lower in the provided samples with high-molecular-weight PEG. Polymer branches in these suspensions are absorbed by the surface of the particles. Due to OH bonds in the silica particles and also due to the presence of this bond in PEG, creating a hydrogen bond is likely. Such a hydrogen bond between the polymer yarn and the particle surface causes surface absorption of the particles. To show the effect of molecular weight on fibers, woven fabric specimens impregnated with shear thickening fluid (STF) have been examined by penetration and pressure test diagrams have been investigated. In a sample with higher molecular weight, displacement to yield point is higher and residence to penetration does not show much difference.

2018 ◽  
Vol 8 ◽  
pp. 184798041878655 ◽  
Author(s):  
Minghai Wei ◽  
Li Sun ◽  
Peipei Qi ◽  
Chunguang Chang ◽  
Chunyang Zhu

In general, shear thickening fluids show a marked increase in viscosity beyond a critical shear rate, which can be attributed to the hydrodynamic clustering effects, where in any external energy acting on a shear thickening fluid is dissipated quickly. However, there is a lack of theoretical modeling to predict the viscosity curve of shear thickening fluids, which changes continuously with the increasing shear rate. In this article, a phenomenological continuous viscosity modeling for a class of shear thickening fluids is proposed. The modeling predicts shear thickening and thinning behaviors that are naturally exhibited by shear thickening fluids for high and high enough values of the shear rate. The result shows that the phenomenological modeling provides a very good fit for several independent experimental data sets. Therefore, the proposed modeling can be used in numerical simulations and theoretical analysis across different engineering fields.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Wenchao Huang ◽  
Yanzhe Wu ◽  
Ling Qiu ◽  
Cunku Dong ◽  
Jie Ding ◽  
...  

The addition of a small amount of graphene oxide into a traditional colloidal silica-based shear thickening fluid (STF) can lead to a significant change in viscosity, critical shear rate, storage modulus, and loss modulus of STF. This finding provides an effective way to prepare stronger and light-weight STFs.


Author(s):  
J. Ferguson ◽  
N. E. Hudson ◽  
J. R. Ebdon ◽  
N. J. Flint ◽  
D. J. Hourston ◽  
...  

2017 ◽  
Vol 27 (1) ◽  
pp. 015021 ◽  
Author(s):  
A Haris ◽  
B W Y Goh ◽  
T E Tay ◽  
H P Lee ◽  
A V Rammohan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document