scholarly journals Automation of extra-analytical phase for clinical laboratory

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ebubekir Bakan ◽  
Fatma Zuhal Umudum

AbstractExtra-analytical automation is of critical importance in patient safety with respect to accurate, fast test result reporting. Through the previous decades, significant improvements in laboratory errors have been achieved by technological facilities, which have become a substantial part of the reduction of preventable diagnostic errors. In clinical laboratory practice, the total testing process (TTP) is under the effect of error sources: preanalytical, analytical, and post-analytical variables. Since many extra-analytical processes within and outside the clinical laboratory may be automated, management of the extra-analytical phase can prevent errors, resulting in the total quality of laboratory diagnostics and customer satisfaction. The automation technologies have added a serious impact on the proficiency of clinical laboratories. To improve standardization, organization, efficiency, and quality of TTP, many manual tasks have now been partially or entirely automated by labor-saving instrumentations. The implementation of extra-analytical automation in the laboratory processes has recently made them standardized and manageable. Depending on the workload and workflow of the clinical laboratory, it is of critical importance to implement adequate systems, providing standardization of the TTP and resulting in high-quality test results.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ebubekir Bakan ◽  
Nuri Bakan

Abstract During previous decades, significant improvements in laboratory errors have become a substantial part of reducing preventable diagnostic errors. In clinical laboratory practice, the errors in the testing process are primarily associated with extra-analytical phase error sources, influencing the test result quality profoundly. Thus, the management of these critical error sources makes their effects preventable thanks to automation and computer sciences. The implementation of non-analytical automated systems requires a risk management strategy based on laboratory’s workflow and bottlenecks. Then, the improvements can be measured and evaluated by the usage of quality indicators (QI). Consequently, the total quality of laboratory diagnostics and higher patient safety is closely dependent on this type of automation. This review will help laboratory professionals, managers, and directors improve the total testing processes (TTP). The automation technologies have added a serious impact on the proficiency of laboratory medicine. Several instrumentations have now partially or entirely automated many manual tasks to improve standardization, organization, efficiency, and TTP quality. The implementation of non-analytical automation has made them manageable. As a result, non-analytical automation within and outside the clinical laboratory will necessarily lessen the error sources’ effect on the total test process, enhancing the quality of the test results.


2010 ◽  
Vol 29 (4) ◽  
pp. 315-324 ◽  
Author(s):  
Giorgio Rin

Pre-Analytical Workstations as a Tool for Reducing Laboratory ErrorsReducing errors and improving quality are an integral part of Laboratory Medicine. Laboratory testing, a highly complex process commonly called the total testing process (TTP), is usually subdivided into three traditional (pre-, intra-, and post-) analytical phases. A series of papers published from 1989 drew the attention of laboratory professionals to the pre-analytical phase, which currently appears to be more vulnerable to errors than the other phases. Consequently, the preanalytical phase should be the main target for further quality improvement. Therefore, identifying the critical steps in the pre-analytical phase is a prerequisite for continuous quality improvement, further error reduction and thus for improving patient safety. Use of automated systems where feasible, and use of error reduction/improved quality as a factor when selecting instrumentation are the main tools we have to insure high quality and minimize errors in the pre-analytical phase. The reasons for automation of the pre-analytical phase have become so compelling that it is no longer simply a competitive advantage for laboratories, but rather a competitive necessity. These systems can impact on the clinical/laboratory interface and affect the efficiency, effectiveness and quality of care.


Author(s):  
Mario Plebani

AbstractA body of evidence collected in the last few decades demonstrates that the pre- and post-analytical phases of the testing cycle are more error-prone than the analytical phase. However, the paradigm of errors and quality in laboratory medicine has been questioned, analytical mistakes continuing to be a major cause of adverse clinical outcomes and patient harm. Although the brain-to-brain concept is widely recognized in the community of laboratory professionals, there is lack of clarity concerning the inter-relationship between the different phases of the cycle, interdependence between the pre-analytical phase and analytical quality, and the effect of the post-analytical steps on the quality of ultimate laboratory information. Analytical quality remains the “core business” of clinical laboratories, but laboratory professionals and clinicians alike should never lose sight of the fact that pre-analytical variables are often responsible for erroneous test results and that quality biospecimens are pre-requisites for a reliable analytical phase. In addition, the pressure for expert advice on test selection and interpretation of results has increased hand in hand with the ever-increasing complexity of tests and diagnostic fields. Finally, the data on diagnostic errors and inappropriate clinical decisions made due to delay or misinterpretation of laboratory data underscore the current need for greater collaboration at the clinical-laboratory interface.


Author(s):  
Kavitha Manoharan ◽  
Hemavathi Manoharan ◽  
Chetna Sharma

Background: Laboratory diagnostics is the fast-growing field which contributes 70% of clinical diagnosis. Laboratory information has a profound impact on patient diagnosis. Research has demonstrated most of the laboratory errors occur in the pre-analytical phase. Incorrect and incomplete filling of information on the laboratory request forms can significantly impact the quality of laboratory results, and it affects patient outcome and resources. We, therefore, evaluated the extent of incomplete laboratory forms in our center.Methods: The study was a retrospective study conducted on all request forms received over 1 month from June 15, 2018, to July 15, 2018, in the Clinical Pathology Department of ESI hospital, Coimbatore, during working hours were analyzed for the frequency of incomplete data.Results: Only the patient’s name appeared in all the forms. Consultant in charge of requesting laboratory tests (99%) was the most omitted parameter. No clinical details or location/ward details of the patient was provided in 90.7% and 7% of the cases. Age and gender did not appear in 21.9% and 22%, respectively. Date of request, doctor’s signature, and hospital number were missing on 8.4%, 27.6%, and 4.4%, respectively.Conclusions: The study has demonstrated the level completion of laboratory request forms was suboptimal. This may be responsible for many pre-analytical errors. There should be closer interaction between clinicians and laboratory physician to improve the quality of laboratory services and resource management.


Author(s):  
Mario Plebani

AbstractLaboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46–68.2% of total errors), while a high error rate (18.5–47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called “laboratory errors”, although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term “laboratory error” and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes in pre- and post-examination steps must be minimized to guarantee the total quality of laboratory services.


2012 ◽  
Vol 31 (3) ◽  
pp. 174-183 ◽  
Author(s):  
Nada Majkić-Singh ◽  
Zorica Šumarac

Quality Indicators of the Pre-Analytical PhaseQuality indicatorsare tools that allow the quantification of quality in each of the segments of health care in comparison with selected criteria. They can be defined as an objective measure used to assess the critical health care segments such as, for instance, patient safety, effectiveness, impartiality, timeliness, efficiency, etc. In laboratory medicine it is possible to develop quality indicators or the measure of feasibility for any stage of the total testing process. The total process or cycle of investigation has traditionally been separated into three phases, the pre-analytical, analytical and post-analytical phase. Some authors also include a »pre-pre« and a »post-post« analytical phase, in a manner that allows to separate them from the activities of sample collection and transportation (pre-analytical phase) and reporting (post-analytical phase). In the year 2008 the IFCC formed within its Education and Management Division (EMD) a task force calledLaboratory Errors and Patient Safety (WG-LEPS)with the aim of promoting the investigation of errors in laboratory data, collecting data and developing a strategy to improve patient safety. This task force came up with the Model of Quality Indicators (MQI) for the total testing process (TTP) including the pre-, intra- and post-analytical phases of work. The pre-analytical phase includes a set of procedures that are difficult to define because they take place at different locations and at different times. Errors that occur at this stage often become obvious later in the analytical and post-analytical phases. For these reasons the identification of quality indicators is necessary in order to avoid potential errors in all the steps of the pre-analytical phase.


Author(s):  
Marilena Stamouli ◽  
Antonia Mourtzikou

The main role that clinical laboratories play in the detection, diagnosis, and treatment of diseases is clearly evident. Clinical laboratories need to sustain a commitment to quality and demonstrate a certifiable level of compliance. Many strategies are used to reduce laboratory errors, including internal QC procedures, external quality assessment programs, implementation of QIs and six-sigma methodology. All strategies should be consistent with the requirements of the international standard for medical laboratory accreditation and suitable for promoting corrective/preventive actions. They must promote total quality and patient safety and be consistent with the definition of a laboratory error. Harmonization process is in progress; however, further efforts must be made. Total quality management must be evaluated periodically. For a patient-centered approach, there is the need to assure that each and every step of the total testing process is correctly performed, that weaknesses are recognized, and that corrective and preventive actions are designed and implemented.


2020 ◽  
Vol 58 (3) ◽  
pp. 350-356 ◽  
Author(s):  
Martina Zaninotto ◽  
Mario Plebani

AbstractThe recently raised concerns regarding biotin interference in immunoassays have increased the awareness of laboratory professionals and clinicians of the evidence that the analytical phase is still vulnerable to errors, particularly as analytical interferences may lead to erroneous results and risks for patient safety. The issue of interference in laboratory testing, which is not new, continues to be a challenge deserving the concern and interest of laboratory professionals and clinicians. Analytical interferences should be subdivided into two types on the basis of the possibility of their detection before the analytical process. The first (type 1) is represented by lipemia, hemolysis and icterus, and the second (type 2), by unusual constituents that are not undetectable before analysis, and may affect the matrix of serum/plasma of individual subjects. Type 2 cannot be identified with current techniques when performing the pre-analytical phase. Therefore, in addition to a more careful evaluation and validation of the method to be used in clinical practice, the awareness of laboratory professionals should be raised as to the importance of evaluating the quality of biological samples before analysis and to adopt algorithms and approaches in the attempt to reduce problems related to erroneous results due to specific or non-specific interferences.


Author(s):  
Mario Plebani ◽  
Laura Sciacovelli ◽  
Ada Aita ◽  
Michela Pelloso ◽  
Maria Laura Chiozza

AbstractThe definition, implementation and monitoring of valuable analytical quality specifications have played a fundamental role in improving the quality of laboratory services and reducing the rates of analytical errors. However, a body of evidence has been accumulated on the relevance of the extra-analytical phases, namely the pre-analytical steps, their vulnerability and impact on the overall quality of the laboratory information. The identification and establishment of valueable quality indicators (QIs) represents a promising strategy for collecting data on quality in the total testing process (TTP) and, particularly, for detecting any mistakes made in the individual steps of the pre-analytical phase, thus providing useful information for quality improvement projects. The consensus achieved on the developed list of harmonized QIs is a premise for the further step: the identification of achievable and realistic performance targets based on the knowledge of the state-of-the-art. Data collected by several clinical laboratories worldwide allow the classification of performances for available QIs into three levels: optimum, desirable and minimum, in agreement with the widely accepted proposal for analytical quality specifications.


2012 ◽  
Vol 31 (4) ◽  
pp. 265-270 ◽  
Author(s):  
Mario Plebani

Summary Laboratory medicine, as a specialty that had prioritised quality control, has always been at the forefront of error reduction. In the last decades, a dramatic decrease of analytical errors has been experienced, while a relatively high frequency of errors has been documented in the pre-analytical phase. Most pre-analytical errors, which account for up to 70% of all mistakes made in laboratory diagnostics, arise during patient preparation, and sample collection, transportation, preparation for analysis and storage. However, while it has been reported that the pre-analytical phase is error-prone, only recently has it been demonstrated that most of these errors occur in the »pre-pre-analytical phase«, which comprises the initial procedures of the testing process performed outside the laboratory walls by healthcare personnel outside the direct control of the clinical laboratory. Developments in automation and information technologies have played a major role in decreasing some pre-analytical errors and, in particular, the automation of repetitive, errorprone and bio-hazardous pre-analytical processes performed within the laboratory walls has effectively decreased errors in specimen preparation, centrifugation, aliquot preparation, pipetting and sorting. However, more efforts should be made to improve the appropriateness of test request, patient and sample identification procedures and other pre-analytical steps performed outside the laboratory walls.


Sign in / Sign up

Export Citation Format

Share Document