Optimization of Kiel geometry for better recovery factor in high temperature measurement in aero gas turbine engine

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

Abstract During gas turbine engine testing, steady-state gas-path stagnation temperatures and pressures are measured in order to calculate the adiabatic efficiencies of the major turbomachinery components. These measurements are carried out using fixed intrusive probes, which are installed at the inlet and outlet of each component. The overall uncertainty in calculated component efficiency depends on the accuracy of discrete point pressure and temperature measurement. High accuracy in measurement and prediction of measurement errors has become increasingly important if small gains in component performance needs to be achieved. The recent trend is to predict component efficiencies within ±1–2%. The present work covers different Kiel designs that have been developed in a response to this demand based on a MATLAB code and experimental evaluation. A parametric study has been carried out by varying the two most critical parameters viz. Ae/Ab ratio and L/D ratio to optimize the Kiel design. These design changes will allow measurements to be made with minimum possible errors and efficiencies to be calculated more accurately over a wider range of conditions inside a low bypass turbofan gas turbine engine.

Author(s):  
Peter D. Smout ◽  
Steven C. Cook

The determination of gas turbine engine performance relies heavily on intrusive rakes of pilot tubes and thermocouples for gas path pressure and temperature measurement. For over forty years, Kiel-shrouds mounted on the rake body leading edge have been used as the industry standard to de-sensitise the instrument to variations in flow incidence and velocity. This results in a complex rake design which is expensive to manufacture, susceptible to mechanical damage, and difficult to repair. This paper describes an exercise aimed at radically reducing rake manufacture and repair costs. A novel ’common cavity rake’ (CCR) design is presented where the pressure and/or temperature sensors are housed in a single slot let into the rake leading edge. Aerodynamic calibration data is included to show that the performance of the CCR design under uniform flow conditions and in an imposed total pressure gradient is equivalent to that of a conventional Kiel-shrouded rake.


Author(s):  
V. Pachidis ◽  
P. Pilidis ◽  
I. Li

The performance analysis of modern gas turbine engine systems has led industry to the development of sophisticated gas turbine performance simulation tools and the utilization of skilled operators who must possess the ability to balance environmental, performance and economic requirements. Academic institutions, in their training of potential gas turbine performance engineers have to be able to meet these new challenges, at least at a postgraduate level. This paper describes in detail the “Gas Turbine Performance Simulation” module of the “Thermal Power” MSc course at Cranfield University in the UK, and particularly its practical content. This covers a laboratory test of a small Auxiliary Power Unit (APU) gas turbine engine, the simulation of the ‘clean’ engine performance using a sophisticated gas turbine performance simulation tool, as well as the simulation of the degraded performance of the engine. Through this exercise students are expected to gain a basic understanding of compressor and turbine operation, gain experience in gas turbine engine testing and test data collection and assessment, develop a clear, analytical approach to gas turbine performance simulation issues, improve their technical communication skills and finally gain experience in writing a proper technical report.


Author(s):  
Maksim Shevchenko ◽  
Sergiy Yepifanov ◽  
Igor Loboda

This paper addresses the problem of estimation of unmeasured gas turbine engine variables using statistical analysis of measured data. Possible changes of an engine health condition and lack of information about these changes caused by limited instrumentation are taken into account. Engine thrust is under consideration as one of the most important unmeasured parameters. Two common methods of aircraft gas turbine engine (GTE) thrust monitoring and their errors due to health condition changes are analyzed. Additionally, two mathematical techniques that allow reducing in-flight thrust estimation errors in the case of GTE deterioration are suggested and verified in the paper. They are a ridge trace and a principal component analysis. A turbofan engine has been chosen as a test case. The engine has five measured variables and 23 health parameters to describe its health condition. Measurement errors are simulated using a generator of random numbers with the normal distribution. The engine is presented in calculations by its nonlinear component level model (CLM). Results of the comparison of thrust estimates computed by the CLM and the proposed techniques confirm accuracy of the techniques. The regression model on principal components has demonstrated the highest accuracy.


Author(s):  
Gregory Corman ◽  
Anthony Dean ◽  
Stephen Brabetz ◽  
Keith McManus ◽  
Milivoj Brun ◽  
...  

GE is continuing work on the development of Melt-Infiltrated Ceramic Matrix Composites (MI-CMC) for use in industrial gas turbine engine components. Long-term environmental degradation of test samples under realistic engine conditions is being determined using a unique high-pressure combustion rig apparatus. Rig testing is also being used to evaluate an F-class 1st stage shroud system incorporating an MI-CMC inner shroud component. While large, advanced engines, such as the F and H classes, offer the greatest benefits for using MI-CMC components, initial engine tests have been done using a GE-2 (2MW) machine to reduce costs and risk. Long term (1000 hours) engine testing results for single piece GE-2 shrouds are also described.


2002 ◽  
Vol 124 (3) ◽  
pp. 459-464 ◽  
Author(s):  
G. S. Corman ◽  
A. J. Dean ◽  
S. Brabetz ◽  
M. K. Brun ◽  
K. L. Luthra ◽  
...  

General Electric has developed SiC fiber-reinforced SiC-Si matrix composites produced by silicon melt infiltration for use in gas turbine engine applications. High temperature, high-pressure combustion rig testing, and engine testing has been performed on combustor liners and turbine shrouds made from such MI composites. Frame 5 sized combustor liners were rig tested under lean head end diffusion flame conditions for 150 hours, including 20 thermal trip cycles, with no observed damage to the ceramic liners. Similarly, 46-cm diameter, single-piece turbine shroud rings were fabricated and tested in a GE-2 gas turbine engine. The fabrication and testing of both components are described.


2014 ◽  
Vol 2014 ◽  
pp. 1-17
Author(s):  
M. Sivapragasam ◽  
S. Ramamurthy ◽  
M. D. Deshpande ◽  
P. White

An air jet distortion generation system is developed to simulate the distorted flow field ahead of gas turbine engines in ground test facility. The flow field of a system of four jets arranged circumferentially and issuing into a confined counterflow was studied experimentally and numerically. The total pressure distortion parameters were evaluated at the Aerodynamic Interface Plane (AIP) for several values of mass flow ratios. Since the total pressure loss distribution at theAIPis characteristically “V” shaped, the number of jets was increased to obtain total pressure distributions as required for gas turbine engine testing. With this understanding, a methodology has been developed to generate a target total pressure distortion pattern at theAIP. Turbulent flow computations are used to iteratively progress towards the target distribution. This methodology was demonstrated for a distortion flow pattern typical of use in gas turbine engine testing using twenty jets, which is a smaller number than reported in the literature. The procedure converges with a root-mean-square error of 3.836% and is able to reproduce the target pattern and other distortion parameters.


2012 ◽  
Vol 8 (3) ◽  
pp. 212876 ◽  
Author(s):  
Xuewu Dai ◽  
Konstantinos Sasloglou ◽  
Robert Atkinson ◽  
John Strong ◽  
Isabella Panella ◽  
...  

Author(s):  
L. J. Kerr ◽  
T. S. Nemec ◽  
G. W. Gallops

A second generation Kalman filter algorithm is described that has sufficient accuracy and response for real-time detection and estimation of gas turbine engine gas path damage caused by normal wear, mechanical failures and ingestion of foreign objects. The algorithm was developed for in-flight operation of aircraft engines but also has application for marine and industrial gas turbines. The control measurement and microcomputer requirements are described. The performance and sensitivity to engine transients and measurement errors is evaluated. The algorithm is demonstrated with actual engine data of ice and bird ingestion tests.


Sign in / Sign up

Export Citation Format

Share Document