Turbulent Models and Axial Flow Pump Performance Prediction

2007 ◽  
Vol 24 (1) ◽  
pp. 1-10
Author(s):  
Chen Hongxun ◽  
Li Haifeng ◽  
Shi Fajia ◽  
Ma Zheng
Author(s):  
Sang-Won Kim ◽  
Youn-Jea Kim

An axial-flow pump has a relatively high discharge flow rate and specific speed at a relatively low head and it consists of an inlet guide vane, impeller, and outlet guide vane. The interaction of the flow through the inlet guide vane, impeller, and outlet guide vane of the axial-flow pump has a significant effect on its performance. Of those components, the guide vanes especially can improve the head and efficiency of the pump by transforming the kinetic energy of the rotating flow, which has a tangential velocity component, into pressure energy. Accordingly, the geometric configurations of the guide vanes such as blade thickness and angle are crucial design factors for determining the performance of the axial-flow pump. As the reliability of Computational Fluid Dynamics (CFD) has been elevated together with the advance in computer technology, numerical analysis using CFD has recently become an alternative to empirical experiment due to its high reliability to measure the flow field. Thus, in this study, 1,200mm axial-flow pump having an inlet guide vane and impeller with 4 blades and an outlet guide vane with 6 blades was numerically investigated. Numerical study was conducted using the commercial CFD code, ANSYS CFX ver. 16.1, in order to elucidate the effect of the thickness and angle of the guide vanes on the performance of 1,200mm axial-flow pump. The stage condition, which averages the fluxes between interfaces and is accordingly appropriate for the evaluation of pump performance, was adopted as the interface condition between the guide vanes and the impeller. The rotational periodicity condition was used in order to enable a simplified geometry to be used since the guide vanes feature multiple identical regions. The shear stress transport (SST) k-ω model, predicting the turbulence within the flow in good agreement, was also employed in the CFD calculation. With regard to the numerical simulation results, the characteristics of the pressure distribution were discussed in detail. The pump performance, which will determine how well an axial-flow pump will work in terms of its efficiency and head, was also discussed in detail, leading to the conclusion on the optimal blade thickness and angle for the improvement of the performance. In addition, the total pressure loss coefficient was considered in order to investigate the loss within the flow paths depending on the thickness and angle variations. The results presented in this study may give guidelines to the numerical analysis of the axial-flow pump and the investigation of the performance for further optimal design of the axial-flow pump.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Honggeng Zhu ◽  
Ge Bo ◽  
Yuanbing Zhou ◽  
Rentian Zhang ◽  
Jilin Cheng

Axial-flow pumps are widely used in every sector of China. After many years of operation, the aging of mechanical and electrical facilities poses threats to their steady and safe operation. Taking the technical innovation of an axial-flow pump station as an example, the study is focused on the pump selection and performance prediction. The pump similarity law and specific speed were applied to guide the pump selection based on the designed head and discharge. The performances of pump models were compared and it is suggested for the technical innovation that when the selected model pump is adopted, the impeller diameter is kept at 3100 mm and the rotational speed is reduced from 150r/min to 136.4r/min to improve its cavitation performance. A three-dimensional pumping system model was established by using software Pro/E and CFD analyses were conducted to predict the hydraulic performance of the pumping system for the evaluation of technical innovation. It is shown through the comparison of computed results with model test results that the designed flow rate corresponding to the designed head can be fully satisfied with the selected pump and stronger pumping capacity can be prospected at the designed and mean lifting head. The pumping system model tests, in comparison between the original and the selected model pump, indicate that when the innovated pump station operates under characteristic heads, the pumping system efficiency can be raised by more than 3 percentages, and the cavitation allowance can be decreased by 0.90m; thus, better engineering and economic benefits can be prospected through the technical innovation.


2002 ◽  
Vol 45 (2) ◽  
pp. 293-300 ◽  
Author(s):  
Toshiaki KANEMOTO ◽  
Shingo KIMURA ◽  
Shin OBA ◽  
Masako SATOH

2012 ◽  
Vol 152-154 ◽  
pp. 1566-1571
Author(s):  
De Sheng Zhang ◽  
Guang Jian Zhang ◽  
Wei Dong Shi ◽  
Tong Tong Li

The full flow field numerical simulation of the axial-flow pump model is carried out to predict the pump performance based on RNG k-ε model and SIMPLE algorithm and the method of calculating head and efficiency. The numerical results show that the head and efficiency prediction curves have a good agreement with the experimental results. In the optimal operating condition, the prediction error of head is 0.04% and the efficiency error is 0.39% which could meet the requirements of engineering applications. The prediction error based on RNG k-ε turbulence model is larger in the off-design condition owing to the complex flow field of axial-flow pump. The predicted head is lower than the experimental results in the small flow rate conditions and its maximum error is 5.12%, while is higher than the experimental data in the large flow rate conditions and its maximum error is 17.39%. The conclusions will provide the basis and reference for the performance prediction of axial-flow pumps based on CFD.


1988 ◽  
Vol 54 (505) ◽  
pp. 2465-2470
Author(s):  
Yukio KUNIKIYO ◽  
Shigenori MATSUNAGA ◽  
Haruo ISHIBASHI ◽  
Hiroyasu NAKAYAMA ◽  
Mitsuo UNO ◽  
...  

2021 ◽  
Vol 107 ◽  
pp. 15-25
Author(s):  
M. Prince Moifatswane ◽  
Nkosinathi Madushele ◽  
Noor A. Ahmed

Thus far, axial flow pumps remain a significant hydrodynamic unit. These pumps have common applications for various systems that require a high flow rate and a lower head. They tend to be less efficient and consume excessive power when operating at low flow conditions. Most of the studies focus on improving the hydraulic performance of these pumps based on the best efficiency point (BEP) flow conditions. This approach is mostly based on the assumption that the pump will always operate at BEP. However, this is not always the case, because the operational condition of the pump may require an adjustment to meet certain system demands. Hence, it is necessary to emphasize the need to improve the hydraulic performance of these pumps for multiple flow conditions. This means that in addition to BEP, the lowest, and the highest operational conditions need to be considered when improving the pump performance. Also, it is important to review the phenomenon of cavitation in every design optimization investigation, given its significance to pump performance and some misrepresentation which are sometimes associated with its assessment. Therefore. the main contribution of this article is to briefly discuss the successful and unsuccessful design optimization methods of an axial flow pump. Furthermore, it highlights the significance of improving the pump performance at multiple flow conditions and also to incorporate the analysis of using CFD methods to analyze the results of cavitation performance in every pump performance improvement investigation.


2021 ◽  
Vol 11 (15) ◽  
pp. 6774
Author(s):  
Fan Yang ◽  
Dongjin Jiang ◽  
Tieli Wang ◽  
Pengcheng Chang ◽  
Chao Liu ◽  
...  

The outlet conduit is an important construction connecting the outlet of the pump guide vane and the outlet pool; in order to study the hydraulic performance of the straight outlet conduit of the axial-flow pump device, this paper adopts the method of numerical simulation and analyzes the influence of the division pier on the pressure and velocity distribution inside and near the wall of the straight outlet conduit based on three design schemes. Four pressure pulsation measuring points were arranged in the straight outlet conduit, and the low-frequency pulsation characteristic information inside the straight outlet conduit with and without the division pier was extracted by wavelet packet reconstruction. The results show that the addition of a division pier has an effect on the hydraulic loss, near-wall pressure and velocity distribution in the straight outlet conduit. A small high-pressure zone is formed near the wall at the starting position of the division pier, and a large high-speed zone is formed on the left side at the starting position of the division pier. The length of the division pier has no significant effect on the flow distribution of the straight outlet conduit and the pressure and velocity distribution near the wall. Under different working conditions, each monitoring point has the maximum energy in the sub-band (0~31.25 Hz). With the increase of the flow rate, the total pressure energy of the straight outlet conduit decreases gradually. Under each condition, the difference of the energy proportion of the horizontal monitoring points of the straight outlet conduit is small, and the difference of the energy proportion of the two monitoring points at the top and bottom of the outlet channel is relatively large. The energy of the two monitoring points in the straight outlet conduit with a division pier is smaller than that of the two monitoring points in the straight outlet conduit without a division pier. There are differences in the main frequency and the power spectrum corresponding to the main frequency of the monitoring points in the straight outlet conduit, and the reasonable setting of the division pier is conducive to reducing the pressure pulsation of the flow in the straight outlet conduit and is beneficial to the safe and stable operation of the pump device.


Sign in / Sign up

Export Citation Format

Share Document