scholarly journals Investigation into the Influence of Division Pier on the Internal Flow and Pulsation in the Outlet Conduit of an Axial-Flow Pump

2021 ◽  
Vol 11 (15) ◽  
pp. 6774
Author(s):  
Fan Yang ◽  
Dongjin Jiang ◽  
Tieli Wang ◽  
Pengcheng Chang ◽  
Chao Liu ◽  
...  

The outlet conduit is an important construction connecting the outlet of the pump guide vane and the outlet pool; in order to study the hydraulic performance of the straight outlet conduit of the axial-flow pump device, this paper adopts the method of numerical simulation and analyzes the influence of the division pier on the pressure and velocity distribution inside and near the wall of the straight outlet conduit based on three design schemes. Four pressure pulsation measuring points were arranged in the straight outlet conduit, and the low-frequency pulsation characteristic information inside the straight outlet conduit with and without the division pier was extracted by wavelet packet reconstruction. The results show that the addition of a division pier has an effect on the hydraulic loss, near-wall pressure and velocity distribution in the straight outlet conduit. A small high-pressure zone is formed near the wall at the starting position of the division pier, and a large high-speed zone is formed on the left side at the starting position of the division pier. The length of the division pier has no significant effect on the flow distribution of the straight outlet conduit and the pressure and velocity distribution near the wall. Under different working conditions, each monitoring point has the maximum energy in the sub-band (0~31.25 Hz). With the increase of the flow rate, the total pressure energy of the straight outlet conduit decreases gradually. Under each condition, the difference of the energy proportion of the horizontal monitoring points of the straight outlet conduit is small, and the difference of the energy proportion of the two monitoring points at the top and bottom of the outlet channel is relatively large. The energy of the two monitoring points in the straight outlet conduit with a division pier is smaller than that of the two monitoring points in the straight outlet conduit without a division pier. There are differences in the main frequency and the power spectrum corresponding to the main frequency of the monitoring points in the straight outlet conduit, and the reasonable setting of the division pier is conducive to reducing the pressure pulsation of the flow in the straight outlet conduit and is beneficial to the safe and stable operation of the pump device.

Author(s):  
Wenpeng Zhang ◽  
Lijian Shi ◽  
Fangping Tang ◽  
Xiaohui Duan ◽  
Haiyu Liu ◽  
...  

The inlet flow conditions will directly affect impeller performance, which is of great concern to pump designers. In this study, based on two axial-flow pump devices, the influence of the evaluation criteria of inlet flow conditions and numerical grid scales on the accuracy of the simulation are investigated, the correctness of the numerical simulation are verified by experiments. The axial velocity distribution uniformity, axial velocity weighted average angle and hydraulic loss are calculated with three grid scales commonly used in engineering. The applicability of three turbulence models in engineering is verified. The influence of the uniformity of the axial velocity distribution on the impeller is quantitatively explored by installing a group of vortex generators. The results show that the simulation errors of the common formula of the axial velocity distribution uniformity for the elbow inlet passage and front-shaft tubular inlet passage are 16.3% and 14.6%, respectively; the modified formula limited the computational error to 0.2%, which reduced the axial velocity distribution uniformity dependence on the grid. The quantitative relationship between inlet flow conditions and pump performance was established, as the impeller efficiency decreased linearly with decreasing axial velocity distribution uniformity.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1404
Author(s):  
Fan Yang ◽  
Pengcheng Chang ◽  
Wenzhu Hu ◽  
Beibei Mao ◽  
Chao Liu ◽  
...  

The 30° slanted axial-flow pump device is widely used in agricultural irrigation and urban drainage in plains areas of China. However, during the actual operation process, the 30° slanted axial-flow pump device is prone to vibration, noise, cracks in the blades, and other phenomena that affect the safe and stable operation of the pump device. In order to analyze the flow pressure pulsation characteristics of the 30° slanted axial-flow pump device under different flow conditions, the time–frequency domain analysis method was used to analyze the pressure pulsation of each flow structure of the 30° slanted axial-flow pump device. The results showed that the internal pulsation law of the elbow oblique inlet flow channel is similar. At the 1.2 Qbep condition, the amplitude fluctuation of the pressure pulsation was small, and the main frequency is 4 times the rotating frequency. The monitoring points at the outlet of the elbow oblique inlet flow channel were affected by the impeller rotation, and the pressure pulsation amplitude was larger than that inside the elbow oblique inlet flow channel. The pressure fluctuation of each monitoring point at the inlet surface of the impeller was affected by the number of blades. There were four peaks and four valleys, and the main frequency was 4 times the rotating frequency. The amplitude of pressure fluctuation increased gradually from the hub to the rim. The main frequency of pressure fluctuation at each monitoring point of the impeller outlet surface was 4 times of the rotating frequency, and the low frequency was rich. The amplitude of pressure fluctuation was significantly lower than that of the impeller inlet. With the increase of flow rate, the peak fluctuation of pressure coefficient decreased gradually, and the amplitude of pressure fluctuation tended to be stable. Under 0.8 Qbep and 1.0 Qbep conditions, the large fluctuation of the pressure fluctuation amplitude on the outlet surface of the guide vane was mainly affected by the low-frequency fluctuation. Under the 1.2 Qbep condition, the pressure fluctuation amplitude changed periodically.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1653
Author(s):  
Nengqi Kan ◽  
Zongku Liu ◽  
Guangtai Shi ◽  
Xiaobing Liu

To reveal the effect of tip clearance on the flow behaviors and pressurization performance of a helico-axial flow pump, the standard k-ε turbulence model is employed to simulate the flow characteristics in the self-developed helico-axial flow pump. The pressure, streamlines and turbulent kinetic energy in a helico-axial flow pump are analyzed. Results show that the tip leakage flow (TLF) forms a tip-separation vortex (TSV) when it enters the tip clearance and forms a tip-leakage vortex (TLV) when it leaves the tip clearance. As the blade tip clearance increases, the TLV moves along the blade from the leading edge (LE) to trailing edge (TE). At the same time, the entrainment between the TLV and the main flow deteriorates the flow pattern in the pump and causes great hydraulic loss. In addition, the existence of tip clearance also increases the possibility of TLV cavitation and has a great effect on the pressurization performance of the helico-axial flow pump. The research results provide the theoretical basis for the structural optimization design of the helico-axial flow pump.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988947
Author(s):  
Xiaohui Duan ◽  
Fangping Tang ◽  
Wenyong Duan ◽  
Wei Zhou ◽  
Lijian Shi

Pressure and vibration displacement value are relatively measured by 14 pressure sensors and 2 vibration sensors distributing inside the tank-type model axial flow pump device under different flow rates. By comparison, it is found that the pressure pulsation on the inlet of the impeller is the main cause of hydraulic induced vibration of the pump device, and it is found to have similar amplitude trend with the vertical vibration as the flow rates increases and large correlation coefficient with the horizontal vibration under high flow rates through time-domain analysis. By frequency-domain analysis, it is found that the main frequency of pressure pulsation is three multiplies of the shaft frequency, but it is one multiplies of vertical vibration, and it changes from one multiplies to three multiplies of horizontal vibration. Combining with the analysis of phase-flow rates characteristics of both pressure pulsation and vibration, it is concluded that, for the horizontal vibration, the frequency ingredient of one multiplies ranging from low to high flow rates and three multiplies removing from unstable and high flow rates zone are possibly induced by pressure pulsation on the inlet of impeller, while for the vertical vibration, the frequency ingredient of one multiplies under design flow rates and high flow rates are possibly induced by pressure pulsation on the inlet of impeller. Both the horizontal and vertical vibrations with frequency of two multiplies have little relationship with the pressure pulsation on the inlet of impeller.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yuquan Zhang ◽  
Yanhe Xu ◽  
Yuan Zheng ◽  
E. Fernandez-Rodriguez ◽  
Aoran Sun ◽  
...  

A multiobjective optimization technique based on the computational fluid dynamics (CFD) simulations and the orthogonal test is proposed to reduce the pressure pulsation in this paper. Three levels of four well-known performance factors L9 (34) were considered in the orthogonal test scheme: the number of blades, the blade setting angle, the hub ratio, and the distance between the blade and the guide vane. The evaluation indexes corresponded to the head, efficiency, shaft power, and pressure pulsation, respectively. An optimal configuration A2B1C2D3 was obtained by comprehensive frequency analysis method, after intuitive and range analysis. In comparison with the nonoptimized model, the new design’s head and efficiency increased by 17.8% and 4.26%, whilst the shaft power and the pressure pulsation coefficient reduced by 1.22% and 11%, respectively. Experiments conducted on the optimized pump were consistent with the CFD model. Six different rotational speed conditions in the optimal operating points were numerically calculated in order to explore the internal hydraulic characteristics of the optimized axial flow pump. It is verified that the comprehensive frequency analysis method based on the orthogonal test approach is effective for the multiobjective optimization of the axial flow pump.


Author(s):  
Yan Jin ◽  
Junxin Wu ◽  
Hongcheng Chen ◽  
Chao Liu

Diffuser vane of tubular pump is different with that of the axial flow pump, since the diffusion angle after the impeller is larger than as usual, which is an important part of bulb tubular pump system. By calculating the hydraulic loss of each part of bulb tubular pump system, it is found that the hydraulic loss of diffuser vane is in large proportion of the whole hydraulic loss. For this situation, focuses on the design parameters of diffuser vane such as diffuser vane length, unilateral edge diffusion angle, equivalent diffusion angle are necessary. In this paper, CFD method is used to simulate the turbulent flow in a bulb tubular pumping system with two different diffuser vanes. The three dimensional flow fields in the whole passage of pumping system with different diffuser vanes are obtained. The results show that all the main geometry parameters of the diffuser vane design affect the performances of tubular pumping system, it should be chosen the parameters reasonably based on the actual situation.


2015 ◽  
Vol 741 ◽  
pp. 481-485
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents numerical simulation of the vortex in a submersible axial flow pump impeller using OpenFoam code. A mixture assumption and a finite rate mass transfer model were introduced to analyze vortex. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results have shown that the cavitation may occur on the lower portion of impeller suction side. And the blade channel vortex will be formed in the impeller. It can induce the pressure pulsation in the impeller and can result in reduced efficiency of the submersible axial flow pump.


Author(s):  
Chao Liu ◽  
Fan Yang ◽  
Yan Jin ◽  
Hua Yang

Three-dimensional flow-fields in a high-efficient axial flow pump system were simulated by CFD to further study the internal flow characteristics. The internal flow patterns of the pump system were obtained at large, small and optimum operating conditions. The highest efficiency of pump system measured and calculated are 82.57% and 81% respectively at blade angle 0°. For the suction passage, the axial velocity distribution uniformity reach 97.51%, and the hydraulic loss is 0.039m, the pipe efficiency calculated is 98.5% at the optimum operating conditions. The maximum velocity is 1.429 m/s in the range of operating conditions, which meet the requirement of National standard. The performances predicted were compared with measurement results. It was found that the calculated results agree well with the measured results. The overall flow pattern of the pump system is uniform and smooth, and the hydraulic loss is very small which gives the excellent hydraulic performances of pump system.


Sign in / Sign up

Export Citation Format

Share Document