3D printing of representation surfaces from tensor data of KH2PO4 and low-quartz utilizing the WinTensor software

Author(s):  
Werner Kaminsky ◽  
Trevor Snyder ◽  
Jennifer Stone-Sundberg ◽  
Peter Moeck

AbstractTensorial properties such as thermal expansion, optical rotation, the electro-optic effect, elastic constants, and many more are prepared with a Windows executable, WinTensor, for rendering a graphical representation that can be viewed on a monitor or printed out for a tangible 3D model. Examples of 3D printed representation surfaces in KH

Author(s):  
Morteza Vatani ◽  
Faez Alkadi ◽  
Jae-Won Choi

A novel additive manufacturing algorithm was developed to increase the consistency of three-dimensional (3D) printed curvilinear or conformal patterns on freeform surfaces. The algorithm dynamically and locally compensates the nozzle location with respect to the pattern geometry, motion direction, and topology of the substrate to minimize lagging or leading during conformal printing. The printing algorithm was implemented in an existing 3D printing system that consists of an extrusion-based dispensing module and an XYZ-stage. A dispensing head is fixed on a Z-axis and moves vertically, while the substrate is installed on an XY-stage and moves in the x–y plane. The printing algorithm approximates the printed pattern using nonuniform rational B-spline (NURBS) curves translated directly from a 3D model. Results showed that the proposed printing algorithm increases the consistency in the width of the printed patterns. It is envisioned that the proposed algorithm can facilitate nonplanar 3D printing using common and commercially available Cartesian-type 3D printing systems.


2020 ◽  
Vol 26 (7) ◽  
pp. 1217-1225
Author(s):  
Ranjeet Agarwala ◽  
Carlos J. Anciano ◽  
Joshua Stevens ◽  
Robert Allen Chin ◽  
Preston Sparks

Purpose The purpose of the paper was to present a specific case study of how 3D printing was introduced in the chest wall construction process of a specific patient with unique medical condition. A life-size 3D model of the patient’s chest wall was 3D printed for pre-surgical planning. The intent was to eliminate the need for operative exposure to map the pathological area. The model was used for preoperative visualization and formation of a 1-mm thick titanium plate implant, which was placed in the patient during chest wall reconstructive surgery. The purpose of the surgery was to relive debilitating chronic pain due to right scapular entrapment. Design/methodology/approach The patient was born with a twisted spine. Over time, it progressed to severe and debilitating scoliosis, which required the use of a thoracic brace. Computerized tomography (CT) data were converted to a 3D printed model. The model was used to size and form a 1-mm thick titanium plate implant. It was also used to determine the ideal location for placement of the plate during thoracotomy preoperatively. Findings The surgery, aided by the model, was successful and resulted in a significantly smaller incision. The techniques reduced invasiveness and enabled the doctors to conduct the procedure efficiently and decreased surgery time. The patient experienced relief of the chronic debilitating pain and no longer need the thoracic brace. Originality/value The 3D model facilitated pre-operative planning and modeling of the implant. It also enabled accurate incision locations of the thoracotomy site and placement of the implant. Although chest wall reconstruction surgeries have been undertaken, this paper documents a specific case study of chest wall construction fora specific patient with unique pathological conditions.


2020 ◽  
Author(s):  
Fuyang Chen ◽  
Chenyu Huang ◽  
Chen Ling ◽  
Jinming Zhou ◽  
Yufeng Wang ◽  
...  

Abstract Background: Tibial plateau fracture is one of the common intra-articular fractures in clinic. And its accurate classification and treatment is a difficult problem for orthopedic surgeons. Our research aims to investigate the application value of 3D printing in the classification and preoperative planning of complex tibial plateau fractures.Methods: 28 cases of complex tibial plateau fractures diagnosed and treated in our hospital from January, 2017 to January, 2019.01 were analyzed. Preoperative spiral CT scan was performed and then DICOM data were input into the computer. We use Mimics to process data. And 3D printing technology was applied to print the 3D model of fracture (1:1). Combined with the 3D printed model, the tibial plateau fractures were subdivided into seven types according to the geometric plane of the tibial plateau. The surgical approach was determined on the 3D printed model. And then simulated operations such as accurate reduction of fracture and selection of plate placement were performed.Results: The reconstructed 3D model of tibial plateau fracture can accurately reflect the direction of fracture displacement and the degree of plateau collapse. Also, it and can help with the preoperative surgical design of tibial plateau fracture. The intraoperative fracture details were basically the same as the 3D printed model. And the fracture surface of the tibial plateau was well improved in all 28 cases.Conclusion: 3D printing technology can be used to guide the classification and preoperative planning of complex tibial plateau fractures.


2018 ◽  
Vol 919 ◽  
pp. 222-229
Author(s):  
Jiří Šafka ◽  
Filip Veselka ◽  
Martin Lachman ◽  
Michal Ackermann

The article deals with the topic of 3D printing of pressure vessels and their testing. The main focus of the research was on a 3D model of the pressure vessel, which was originally designed for a student formula racing car project. The described virtual 3D model was designed with regard to 3D printing. The physical model was manufactured using several additive manufacturing technologies. The first technology was FDM using ULTEM 1010 material. The next technology was SLS (Selective Laser Sintering) using polyamide materials (PA3200GF and PA2220). The last technology was SLA (Stereolithography) using a polypropylene material (Durable). Experimental evaluation of the vessels was carried out by a pressure test, which verified the compactness of the 3D printed parts and their possible porosity. At the end of the article, a comparison of each printed model is made in terms of their final price and weight, together with pressure and thermal resistance.


2021 ◽  
Author(s):  
Fuyang Chen ◽  
Chenyu Huang ◽  
chen ling ◽  
Jinming Zhou ◽  
Yufeng Wang ◽  
...  

Abstract Background: Tibial plateau fracture is one of the common intra-articular fractures in clinic. And its accurate classification and treatment is a difficult problem for orthopedic surgeons. Our research aims to investigate the application value of 3D printing in the classification and preoperative planning of complex tibial plateau fractures.Methods: 28 cases of complex tibial plateau fractures diagnosed and treated in our hospital from January, 2017 to January, 2019.01 were analyzed. Preoperative spiral CT scan was performed and then DICOM data were input into the computer. We use Mimics to process data. And 3D printing technology was applied to print the 3D model of fracture (1:1). Combined with the 3D printed model, the tibial plateau fractures were subdivided into seven types according to the geometric plane of the tibial plateau. The surgical approach was determined on the 3D printed model. And then simulated operations such as accurate reduction of fracture and selection of plate placement were performed.Results: The reconstructed 3D model of tibial plateau fracture can accurately reflect the direction of fracture components displacement and the degree of plateau collapse. Also, it can help with the preoperative reconstructive plan for the tibial plateau fracture. The intraoperative fracture details were basically the same as the 3D printed model. And The fracture surface of the tibial plateau of all 28 patients was well improved in terms of restoring the anatomical structure.Conclusion: 3D printing technology can be used to guide the classification and preoperative planning of complex tibial plateau fractures.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1456
Author(s):  
Rifky Ismail ◽  
Rilo Berdin Taqriban ◽  
Mochammad Ariyanto ◽  
Ali Tri Atmaja ◽  
Sugiyanto ◽  
...  

This study aims to invent a new, low-cost, and faster method of prosthetic socket fabrication, especially in Indonesia. In this paper, the photogrammetry with the 3D printing method is introduced as the new applicative way for transradial prosthetic making. Photogrammetry is used to retrieve a 3D model of the amputated hand stump using a digital camera. A digital camera is used for photogrammetry technique and the resulting 3D model is printed using a circular 3D printer with Polylactic acid (PLA) material. The conventional casting socket fabrication method was also conducted in this study as a comparison. Both prosthetic sockets were analyzed for usability, and sectional area conformities to determine the size deviation using the image processing method. This study concludes that the manufacturing of transradial prosthetic sockets incorporating the photogrammetry technique reduces the total man-hour production. Based on the results, it can be implied that the photogrammetry technique is a more efficient and economical method compared to the conventional casting method. The 3D printed socket resulting from the photogrammetry method has a 5–19% area deviation to the casting socket but it is still preferable and adjustable for the transradial amputee when applied to the stump of the remaining hand.


2020 ◽  
pp. 009524432096183
Author(s):  
Leena Karthikeyan ◽  
Suraj Sudhi ◽  
Tushar Shriram Bhatt ◽  
Mani Ganesan ◽  
Panthaplackal Bhaskaran Soumyamol ◽  
...  

Poly Ether Ether Ketone (PEEK) is a very promising engineering thermoplastic material having capability to perform over wide service temperatures from cryogenic to around 300°C. Processing of PEEK is a challenging task, owing to its physical, thermo physical properties and chemical nature. The present paper envisages processing of PEEK by two different techniques viz, 3D printing and extrusion and assessment of properties of respective specimens at 30°C and −196°C. Thermal and mechanical properties and fracture morphological features of PEEK specimen, processed using these techniques are compared. Samples processed by extrusion possessed higher mechanical properties both at 30°C and −196°C. The 3D printed samples, though exhibited inferior strength and modulus, showed significantly higher elongation (150–250%) at 30°C. All samples showed ductile fracture behavior at 30°C. At −196°C, the fracture morphology got transformed in to a pattern typical of brittle materials, as expected. Extruded specimens showed lower thermal expansion coefficient compared to the 3D printed specimens. Thermal expansion characteristics were different in the X, Y and Z directions for 3D printed specimens due to the anisotropy resulting from printing direction which is corroborated by the morphological studies. The results of this investigation enable designing and fabrication of PEEK based structural components of desired geometries for various applications.


2019 ◽  
Vol 119 (2) ◽  
pp. 9 ◽  
Author(s):  
Elizabeth Azhikannickal ◽  
Aaron Uhrin

The three-dimensional (3D) printing manufacturing process begins with the creation of a 3D model—using computer aided design (CAD) software—of the part to be printed. Using a type of 3D printing known as fused deposition modeling (FDM®), the 3D printer extrudes molten plastic to scan lines to create individual layers (i.e., the infill): one on top of the other. (Note that "scan" in this context refers to the movement of the extruder head, along an x,y coordinate path, while depositing molten plastic.) This process is repeated until the overall geometry, specified by the 3D model, is built. This process is attractive for producing proof of concept or prototype parts in various fields including automotive, aerospace, and medical. However, FDM subjects the material to rapid heating and cooling; therefore, some degree of undesirable warpage of the part occurs post fabrication. The primary objective of this study was to determine the effect of 4 process parameters (i.e., infill shape, infill density, number of perimeters created per layer, and layer height) on the total dimensional error of a representative 3D-printed part. This part (the "simple part"), used in Trials 1 through 3 of this study, was a square acrylonitrile butadiene styrene (ABS) plate having a nominal measurement of 50 mm × 50 mm × 5 mm thick. A residual error (the difference between the measured post-printing dimension and the theoretical CAD file dimension) was calculated along each given direction and for each test print. Finally, a root mean square (RMS) error (i.e., the square root of the average of the squared residual errors along the length, width, and thickness directions) was calculated for each printed part. Three repeat test prints were carried out for each parameter. The number of perimeters played a key role in the dimensional stability of the part. As the number of perimeters increased up to 5, the RMS error decreased. Beyond 5 perimeters, however, the RMS error increased due to excessive warpage/curvature at the corners of the part. Ultimately, when examined individually, a grid infill shape at 100% density, a 0.4 mm layer height, and 5 perimeters each produced the lowest warpage. In combination, these same 4 parameters also produced the lowest RMS error (based on dimensional analysis of 3 test prints) when used to print a more complicated part (the "stacked part") in Trial 4.


2019 ◽  
Vol 290 ◽  
pp. 04001 ◽  
Author(s):  
Cătălin Amza ◽  
Aurelian Zapciu ◽  
Diana Popescu

This paper presents a new approach for the production of bespoke shoe lasts used in shoe industry. It is based on measuring key geometric features of existing shoe lasts and establishing a parametric system which can then be used to create a 3D model of a customized fit shoe last. Thus, instead of 3D-scanning the foot and then doing time consuming and skill intensive point cloud data processing, the proposed solution requires only taking several measurements of the customer’s foot and inputting them into the parametric model to obtain the tailored shoe last 3D geometry. Furthermore, the internal geometry of this shoe last is topologically optimized to reduce material volume and 3D printing time, while still withstanding temperatures and loads specific to the shoe manufacturing process. The 3D model also includes geometrical features allowing the attaching of process-specific mounting hardware. Material Extrusion 3D Printing (ME3DP) was used to fabricate the shoe last from thermoplastic material. 3D-printed shoe lasts were tested in a real manufacturing setting, successfully producing bespoke canvas shoes with rubber soles. During testing, the shoe lasts were subjected to typical process loads and to high temperatures.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jacob Skewes ◽  
Michael Y. Chen ◽  
David Forrestal ◽  
Nicholas J. Rukin ◽  
Maria A. Woodruff

Patients often opt for implantation of testicular prostheses following orchidectomy for cancer or torsion. Recipients of testicular prostheses report issues regarding firmness, shape, size, and position, aspects of which relate to current limitations of silicone materials used and manufacturing methods for soft prostheses. We aim to create a 3D printable testicular prosthesis which mimics the natural shape and stiffness of a human testicle using a lattice infill structure. Porous testicular prostheses were engineered with relative densities from 0.1 to 0.9 using a repeating cubic unit cell lattice inside an anatomically accurate testicle 3D model. These models were printed using a multi-jetting process with an elastomeric material and compared with current market prostheses using shore hardness tests. Additionally, standard sized porous specimens were printed for compression testing to verify and match the stiffness to human testicle elastic modulus (E-modulus) values from literature. The resulting 3D printed testicular prosthesis of relative density between 0.3 and 0.4 successfully achieved a reduction of its bulk compressive E-modulus from 360 KPa to a human testicle at 28 Kpa. Additionally, this is the first study to quantitatively show that current commercial testicular prostheses are too firm compared to native tissue. 3D printing allows us to create metamaterials that match the properties of human tissue to create customisable patient specific prostheses. This method expands the use cases for existing biomaterials by tuning their properties and could be applied to other implants mimicking native tissues.


Sign in / Sign up

Export Citation Format

Share Document