On the Motion of a Charged Particle in an Axially Symmetric Magnetic Field

1971 ◽  
Vol 26 (12) ◽  
pp. 2068-2070
Author(s):  
V. L. Bharadwaj

The object of this note is to study the motion of a charged particle entering the magnetic field due to a steady current inside a plasma column. Even if the particles of the plasmas stream mutually interact, their distribution across the stream can be such that the interaction forces are balanced by the transverse pressure gradient in the plasma 1. It is shown here that the test charge entering the plasma stream remains bounded to the stream between two coaxial cylindrical surfaces and further that under suitable conditions it may remain trapped inside a cylindrical box. FISSER and KIPPENHAHN 2 have discussed the general problem of the motion of a charged particle in an axially symmetric magnetic field in configuration space. The following is a particular case of that problem. HERTWECK 3 has investigated the motion of a test charge in the magnetic field due to a line current. His results are applicable here if the test charge remains outside the plasma stream

1965 ◽  
Vol 18 (6) ◽  
pp. 553 ◽  
Author(s):  
PW Seymour ◽  
RB Leipnik ◽  
AF Nicholson

Following a short review of the drift theory of plasma radial compression, an exact solution for the motion of a charged particle in an axially symmetric time-dependent magnetic field is� obtained. The method gives forms for the cylindrical coordinates rand B of the charged particle that have a simple interpretation, the z-motion being of constant velocity. As examples, the exact results are discussed for a simple power law and an exponential time dependence of the magnetic field and, using the latter results, the drift theory of plasma radial compression is qualitatively verified.


1969 ◽  
Vol 3 (2) ◽  
pp. 255-267 ◽  
Author(s):  
M. P. Srivastava ◽  
P. K. Bhat

We have studied the behaviour of a charged particle in an axially symmetric magnetic field having a neutral point, so as to find a possibility of confining a charged particle in a thermonuclear device. In order to study the motion we have reduced a three-dimensional motion to a two-dimensional one by introducing a fictitious potential. Following Schmidt we have classified the motion, as an ‘off-axis motion’ and ‘encircling motion’ depending on the behaviour of this potential. We see that the particle performs a hybrid type of motion in the negative z-axis, i.e. at some instant it is in ‘off-axis motion’ while at another instant it is in ‘encircling motion’. We have also solved the equation of motion numerically and the graphs of the particle trajectory verify our analysis. We find that in most of the cases the particle is contained. The magnetic moment is found to be moderately adiabatic.


The stability of viscous flow between two coaxial cylinders maintained by a constant transverse pressure gradient is considered when the fluid is an electrical conductor and a uniform magnetic field is impressed in the axial direction. The problem is solved and the dependence of the critical number for the onset of instability on the strength of the magnetic field and the coefficient of electrical conductivity of the fluid is determined.


2020 ◽  
Vol 498 (2) ◽  
pp. 3000-3012 ◽  
Author(s):  
F Castillo ◽  
A Reisenegger ◽  
J A Valdivia

ABSTRACT In a previous paper, we reported simulations of the evolution of the magnetic field in neutron star (NS) cores through ambipolar diffusion, taking the neutrons as a motionless uniform background. However, in real NSs, neutrons are free to move, and a strong composition gradient leads to stable stratification (stability against convective motions) both of which might impact on the time-scales of evolution. Here, we address these issues by providing the first long-term two-fluid simulations of the evolution of an axially symmetric magnetic field in a neutron star core composed of neutrons, protons, and electrons with density and composition gradients. Again, we find that the magnetic field evolves towards barotropic ‘Grad–Shafranov equillibria’, in which the magnetic force is balanced by the degeneracy pressure gradient and gravitational force of the charged particles. However, the evolution is found to be faster than in the case of motionless neutrons, as the movement of charged particles (which are coupled to the magnetic field, but are also limited by the collisional drag forces exerted by neutrons) is less constrained, since neutrons are now allowed to move. The possible impact of non-axisymmetric instabilities on these equilibria, as well as beta decays, proton superconductivity, and neutron superfluidity, are left for future work.


1997 ◽  
Vol 11 (12) ◽  
pp. 531-540
Author(s):  
V. Onoochin

An experiment within the framework of classical electrodynamics is proposed, to demonstrate Boyer's suggestion of a change in the velocity of a charged particle as it passes close to a solenoid. The moving charge is replaced by an ultra-short pulse (USP), whose characteristics should depend on the current in the coil. This dependence results from the exchange of energy between the electromagnetic field of the pulse and the magnetic field within the solenoid. This energy exchange could only be explained, by assuming that the vector potential of the solenoid has a direct influence on the pulse.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450151
Author(s):  
O. B. Zaslavskii

We consider collision of two particles in the axially symmetric black hole metric in the magnetic field. If the value of the angular momentum |L| of one particles grows unbound (but its Killing energy remains fixed) one can achieve unbound energy in the center-of-mass frame E c.m. In the absence of the magnetic field, collision of this kind is known to happen in the ergoregion. However, if the magnetic field strength B is also large, with the ratio |L|/B being finite, large E c.m. can be achieved even far from a black hole, in the almost flat region. Such an effect also occurs in the metric of a rotating star.


Sign in / Sign up

Export Citation Format

Share Document