Induktive Plasmabeschleunigung mit nicht-sinusförmigen stehenden elektromagnetischen Wellen / Inductive Plasma Acceleration with Non-Sinusoidal Elektromagnetic Standing Waves

1974 ◽  
Vol 29 (1) ◽  
pp. 45-50
Author(s):  
R. Köhne ◽  
A. Meert

Some types of standing r. f. waves are compared and discussed. As a result a new type of a non-sinusoidal standing wave is proposed which leads to an improved inductive acceleration system. Plasma velocity measurements have been carried out on this system. Numerical calculations are made for the plasma acceleration process and compared with the experimental values of the velocity. The theory as well as the advantage of the proposed system is verified by the results.

1972 ◽  
Vol 27 (5) ◽  
pp. 776-780
Author(s):  
A Meert

Abstract Some comments are made for the generation of e.m. travelling and standing waves used for in-ductive plasma acceleration. Resulting from a simple mathematical formulation the different features lead to a non-conventional method for travelling wave generation, which is compared with the basic method - i. e. the standing wave generation - with regard to Ohmic losses and mag-netic energy density


2002 ◽  
Vol 450 ◽  
pp. 67-95 ◽  
Author(s):  
CH. BLOHM ◽  
H. C. KUHLMANN

The incompressible fluid flow in a rectangular container driven by two facing sidewalls which move steadily in anti-parallel directions is investigated experimentally for Reynolds numbers up to 1200. The moving sidewalls are realized by two rotating cylinders of large radii tightly closing the cavity. The distance between the moving walls relative to the height of the cavity (aspect ratio) is Γ = 1.96. Laser-Doppler and hot-film techniques are employed to measure steady and time-dependent vortex flows. Beyond a first threshold robust, steady, three-dimensional cells bifurcate supercritically out of the basic flow state. Through a further instability the cellular flow becomes unstable to oscillations in the form of standing waves with the same wavelength as the underlying cellular flow. If both sidewalls move with the same velocity (symmetrical driving), the oscillatory instability is found to be tricritical. The dependence on two sidewall Reynolds numbers of the ranges of existence of steady and oscillatory cellular flows is explored. Flow symmetries and quantitative velocity measurements are presented for representative cases.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Gui-qiong Xu

Based on the Hirota bilinear method and theta function identities, we obtain a new type of doubly periodic standing wave solutions for a coupled Higgs field equation. The Jacobi elliptic function expression and long wave limits of the periodic solutions are also presented. By selecting appropriate parameter values, we analyze the interaction properties of periodic-periodic waves and periodic-solitary waves by some figures.


1988 ◽  
Vol 8 (8) ◽  
pp. 119-138 ◽  

AbstractA theorem is proved giving a condition under which certain standing wave solutions of non-linear Schrödinger-type equations are linearly unstable. The eigenvalue equations for the linearized operator at the standing wave can be analysed by dynamical systems methods. A positive eigenvalue is then shown to exist by means of a shooting argument in the space of Lagrangian planes. The theorem is applied to a situation arising in optical waveguides.


1972 ◽  
Vol 27 (3) ◽  
pp. 390-395 ◽  
Author(s):  
A.R. Moon

Abstract The Bethe theory of electron diffraction is used to calculate reflection electron diffraction intensities for medium and high energy electrons. A generalized Hill's determinant method is used for the numerical calculations instead of the more common but slower matrix-eigenvalue technique. Results of a "systematics" calculation of the specular intensity as a function of incident angle are compared with some experimental values for the Si (111) surface. The application of the Bethe theory to crystals where the surface structure differs from the bulk is also considered.


2018 ◽  
Vol 36 (6) ◽  
pp. 1657-1666 ◽  
Author(s):  
Alexander Koustov ◽  
Robert Gillies ◽  
Peter Bankole

Abstract. The study considers simultaneous plasma velocity measurements in the eastward direction carried out by the Clyde River (CLY) Super Dual Auroral Radar Network (SuperDARN) high-frequency (HF) radar and Resolute Bay (RB) incoherent scatter radar – Canada (RISR-C). The HF velocities are found to be in reasonable agreement with RISR velocities up to magnitudes of 700–800 m s−1 while, for faster flows, the HF velocity magnitudes are noticeably smaller. The eastward plasma flow component inferred from SuperDARN convection maps (constructed for the area of joint measurements with consideration of velocity data from all the radars of the network) shows the effect of smaller HF velocities more notably. We show that the differences in eastward velocities between the two instruments can be significant and prolonged for observations of strongly sheared plasma flows.


2013 ◽  
Vol 1521 ◽  
Author(s):  
Christopher J. Morris ◽  
Paul R. Wilkins ◽  
Chadd M. May ◽  
Nicholas W. Piekiel

ABSTRACTThe electrical heating of Ni/Al laminate foils allows interrogation of phenomena at heating rates as high as 10^12 K/s. In the 2011 Fall MRS meeting, we reported on emission spectra from rapidly heated Ni/Al laminates resolved temporally over 350 ns, which provided qualitative evidence of rapid and exothermic vapor phase mixing of Ni and Al in these experiments which we term electrical explosions. These results were significant, because thermal diffusion processes normally limit Ni/Al reactions to much slower energy release rates, potentially limiting their applications. Here we present further evidence of exothermic Ni/Al mixing, quantified by experimental velocity measurements of encapsulation material and interpreted by numerical calculations of energy partitioning into different processes. These calculations agreed well with experiments from different Al, Cu, and Ni samples, sputter-deposited and lithographically patterned into bow-tie bridge structures. Velocity measurements of up to 5 km/s for 11.5 μm thick parylene encapsulation layers were accurately predicted using a single, empirical fitting parameter which depended on the electrical circuit used. The calculations also agreed with encapsulation layers accelerated by electrically exploded Ni/Al laminates as long as an additional 1.2 kJ/g of energy was included in the model. This value is precisely the enthalpy of mixing between Ni and Al, and therefore quantifies the transduction of energy into encapsulation layer kinetic energy.


Sign in / Sign up

Export Citation Format

Share Document